Format

Send to

Choose Destination
Neuron. 2015 Mar 4;85(5):1043-55. doi: 10.1016/j.neuron.2015.02.011.

Melanopsin tristability for sustained and broadband phototransduction.

Author information

1
F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Center for Life Science 12061, 3 Blackfan Circle, Boston, MA 02115, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA. Electronic address: aemanuel@fas.harvard.edu.
2
F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Center for Life Science 12061, 3 Blackfan Circle, Boston, MA 02115, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA. Electronic address: michael.do@childrens.harvard.edu.

Abstract

Mammals rely upon three ocular photoreceptors to sense light: rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs). Rods and cones resolve details in the visual scene. Conversely, ipRGCs integrate over time and space, primarily to support "non-image" vision. The integrative mechanisms of ipRGCs are enigmatic, particularly since these cells use a phototransduction motif that allows invertebrates like Drosophila to parse light with exceptional temporal resolution. Here, we provide evidence for a single mechanism that allows ipRGCs to integrate over both time and wavelength. Light distributes the visual pigment, melanopsin, across three states, two silent and one signaling. Photoequilibration among states maintains pigment availability for sustained signaling, stability of the signaling state permits minutes-long temporal summation, and modest spectral separation of the silent states promotes uniform activation across wavelengths. By broadening the tuning of ipRGCs in both temporal and chromatic domains, melanopsin tristability produces signal integration for physiology and behavior.

PMID:
25741728
PMCID:
PMC4351474
DOI:
10.1016/j.neuron.2015.02.011
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center