Format

Send to

Choose Destination
Front Neurol. 2015 Feb 17;6:29. doi: 10.3389/fneur.2015.00029. eCollection 2015.

Maladaptive neural synchrony in tinnitus: origin and restoration.

Author information

1
Department of Physiology and Pharmacology, University of Calgary , Calgary, AB , Canada ; Department of Psychology, University of Calgary , Calgary, AB , Canada.
2
Institute of Neuroscience and Medicine - Neuromodulation (INM-7), Research Center Jülich , Jülich , Germany ; Department of Neurosurgery, Stanford University , Stanford, CA , USA ; Department of Neuromodulation, University of Cologne , Cologne , Germany.

Abstract

Tinnitus is the conscious perception of sound heard in the absence of physical sound sources external or internal to the body, reflected in aberrant neural synchrony of spontaneous or resting-state brain activity. Neural synchrony is generated by the nearly simultaneous firing of individual neurons, of the synchronization of membrane-potential changes in local neural groups as reflected in the local field potentials, resulting in the presence of oscillatory brain waves in the EEG. Noise-induced hearing loss, often resulting in tinnitus, causes a reorganization of the tonotopic map in auditory cortex and increased spontaneous firing rates and neural synchrony. Spontaneous brain rhythms rely on neural synchrony. Abnormal neural synchrony in tinnitus appears to be confined to specific frequency bands of brain rhythms. Increases in delta-band activity are generated by deafferented/deprived neuronal networks resulting from hearing loss. Coordinated reset (CR) stimulation was developed in order to specifically counteract such abnormal neuronal synchrony by desynchronization. The goal of acoustic CR neuromodulation is to desynchronize tinnitus-related abnormal delta-band oscillations. CR neuromodulation does not require permanent stimulus delivery in order to achieve long-lasting desynchronization or even a full-blown anti-kindling but may have cumulative effects, i.e., the effect of different CR epochs separated by pauses may accumulate. Unlike other approaches, acoustic CR neuromodulation does not intend to reduce tinnitus-related neuronal activity by employing lateral inhibition. The potential efficacy of acoustic CR modulation was shown in a clinical proof of concept trial, where effects achieved in 12 weeks of treatment delivered 4-6 h/day persisted through a preplanned 4-week therapy pause and showed sustained long-term effects after 10 months of therapy, leading to 75% responders.

KEYWORDS:

brain rhythms; coordinated reset; neural plasticity; neural synchrony; tinnitus

Supplemental Content

Full text links

Icon for Frontiers Media SA Icon for PubMed Central
Loading ...
Support Center