Format

Send to

Choose Destination
Poult Sci. 2015 Mar;94(3):518-33. doi: 10.3382/ps/peu076.

Environmental assessment of three egg production systems--Part I: Monitoring system and indoor air quality.

Author information

1
Department of Agricultural and Biosystems Engineering, Iowa State University, Ames.
2
Department of Animal and Food Sciences, University of Delaware, Newark.
3
Department of Agricultural and Biosystems Engineering, Iowa State University, Ames hxin@iastate.edu.

Abstract

To comprehensively assess conventional vs. some alternative laying-hen housing systems under U.S. production conditions, a multi-institute and multi-disciplinary project, known as the Coalition for Sustainable Egg Supply (CSES) study, was carried out at a commercial egg production farm in the Midwestern United States over two single-cycle production flocks. The housing systems studied include a conventional cage house (200,000 hen capacity), an aviary house (50,000 hen capacity), and an enriched colony house (50,000 hen capacity). As an integral part of the CSES project, continual environmental monitoring over a 27-month period described in this paper quantifies indoor gaseous and particulate matter concentrations, thermal environment, and building ventilation rate of each house. Results showed that similar indoor thermal environments in all three houses were maintained through ventilation management and environmental control. Gaseous and particulate matter concentrations of the enriched colony house were comparable with those of the conventional cage house. In comparison, the aviary house had poorer indoor air quality, especially in wintertime, resulting from the presence of floor litter (higher ammonia levels) and hens' activities (higher particulate matter levels) in it. Specifically, daily mean indoor ammonia concentrations had the 95% confidence interval values of 3.8 to 4.2 (overall mean of 4.0) ppm for the conventional cage house; 6.2 to 7.2 (overall mean of 6.7) ppm for the aviary house; and 2.7 to 3.0 (overall mean of 2.8) ppm for the enriched colony house. The 95% confidence interval (overall mean) values of daily mean indoor carbon dioxide concentrations were 1997 to 2170 (2083) ppm for the conventional cage house, 2367 to 2582 (2475) ppm for the aviary house, and 2124 to 2309 (2216) ppm for the enriched colony house. Daily mean indoor methane concentrations were similar for all three houses, with 95% confidence interval values of 11.1 to 11.9 (overall mean of 11.5) ppm. The 95% confidence interval values (overall mean) of daily mean PM10 and PM2.5 concentrations, in mg/m3, were, respectively, 0.57 to 0.61 (0.59) and 0.033 to 0.037 (0.035) for the conventional cage house, 3.61 to 4.29 (3.95) and 0.374 to 0.446 (0.410) for the aviary house, and 0.42 to 0.46 (0.44) and 0.054 to 0.059 (0.056) for the enriched colony house. Investigation of mitigation practices to improve indoor air quality of the litter-floor aviary housing system is warranted.

KEYWORDS:

alternative hen housing; ammonia; greenhouse gas; indoor air quality; particulate matter

PMID:
25737567
PMCID:
PMC4990888
DOI:
10.3382/ps/peu076
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center