Format

Send to

Choose Destination
See comment in PubMed Commons below
Psychopharmacology (Berl). 1989;99 Suppl:S6-12.

Biochemical and behavioural properties of clozapine.

Author information

1
Sandoz Research Institute Berne Ltd., Switzerland.

Abstract

The selection and early development of clozapine was based upon its gross behavioural, arousal-inhibiting, sleep-promoting, and caudate spindle-prolonging properties. Compared to classical neuroleptics, clozapine causes only a short-lasting elevation of plasma prolactin levels, elevates both striatal homovanillic acid and dopamine content, is devoid of marked apomorphine-inhibitory or cataleptogenic activity and fails to induce supersensitivity of striatal dopaminergic systems after chronic administration. Clozapine's intrinsic anticholinergic activity, while stronger than that of other neuroleptic agents, does not appear to underlie either its failure to induce tardive dyskinesias or its superior antipsychotic activity. Furthermore, the overlap between clozapine and several classical neuroleptics with regard to alpha-adrenergic-, serotonin- and histamine-blocking activity makes it unlikely that one or more of these properties is the key to its atypical characteristics. More recent findings show that clozapine and classical neuroleptics differ with regard to their indirect effects on nigral GABA-ergic mechanisms implicated in the induction of tardive dyskinesias and, possibly in keeping with this, that clozapine and similar agents exhibit preferential blockade of D-1 dopamine receptors in the whole animal. Such an action of clozapine in man could well explain both its low EPS liability and, in some subjects, its superior antipsychotic activity.

PMID:
2573106
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center