Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1989 Nov;86(21):8309-13.

Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin.

Author information

1
Department of Biology, Massachusetts Institute of Technology, Cambridge 01239.

Abstract

The characteristic wavelength at which a visual pigment absorbs light is regulated by interactions between protein (opsin) and retinylidene Schiff base chromophore. By using site-directed mutagenesis, charged amino acids in bovine rhodopsin transmembrane helix C were systematically replaced. Substitution of glutamic acid-134 or arginine-135 did not affect spectral properties. However, substitution of glutamic acid-122 by glutamine or by aspartic acid formed pigments that were blue-shifted in light absorption (lambda max = 480 nm and 475 nm, respectively). While the substitution of glutamic acid-113 by aspartic acid gave a slightly red-shifted pigment (lambda max = 505 nm), replacement by glutamine formed a pigment that was strikingly blue-shifted in light absorption (lambda max = 380 nm). The 380-nm species existed in a pH-dependent equilibrium with a 490-nm species such that at acidic pH all of the pigment was converted to lambda max = 490 nm. We conclude that glutamic acid-113 serves as the retinylidene Schiff base counterion in rhodopsin. We believe that this opsin-chromophore interaction is an example of a general mechanism of color regulation in the visual pigments.

PMID:
2573063
PMCID:
PMC298270
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center