An ab initio study of nuclear volume effects for isotope fractionations using two-component relativistic methods

J Comput Chem. 2015 Apr 30;36(11):816-20. doi: 10.1002/jcc.23858. Epub 2015 Feb 25.

Abstract

We investigate the accuracy of two-component Douglas-Kroll-Hess (DKH) methods in calculations of the nuclear volume term (≡ lnK(nv)) in the isotope fractionation coefficient. lnK(nv) is a main term in the chemical equilibrium constant for isotope exchange reactions in heavy element. Previous work based on the four-component method reasonably reproduced experimental lnK(nv) values of uranium isotope exchange. In this work, we compared uranium reaction lnK(nv) values obtained from the two-component and four-component methods. We find that both higher-order relativistic interactions and spin-orbit interactions are essential for quantitative description of lnK(nv). The best alternative is the infinite-order Douglas-Kroll-Hess method with infinite-order spin-orbit interactions for the one-electron term and atomic-mean-field spin-same-orbit interaction for the two-electron term (IODKH-IOSO-MFSO). This approach provides almost equivalent results for the four-component method, while being 30 times faster. The IODKH-IOSO-MFSO methodology should pave the way toward computing larger and more general molecules beyond the four-component method limits.

Keywords: isotope fractionation; nuclear volume effect; relativistic quantum chemistry; two-component theory; uranium.