Format

Send to

Choose Destination
See comment in PubMed Commons below
Eur J Neurosci. 2015 May;41(9):1126-38. doi: 10.1111/ejn.12855. Epub 2015 Feb 24.

Intrinsic membrane plasticity via increased persistent sodium conductance of cholinergic neurons in the rat laterodorsal tegmental nucleus contributes to cocaine-induced addictive behavior.

Author information

  • 1Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.

Abstract

The laterodorsal tegmental nucleus (LDT) is a brainstem nucleus implicated in reward processing and is one of the main sources of cholinergic afferents to the ventral tegmental area (VTA). Neuroplasticity in this structure may affect the excitability of VTA dopamine neurons and mesocorticolimbic circuitry. Here, we provide evidence that cocaine-induced intrinsic membrane plasticity in LDT cholinergic neurons is involved in addictive behaviors. After repeated experimenter-delivered cocaine exposure, ex vivo whole-cell recordings obtained from LDT cholinergic neurons revealed an induction of intrinsic membrane plasticity in regular- but not burst-type neurons, resulting in increased firing activity. Pharmacological examinations showed that increased riluzole-sensitive persistent sodium currents, but not changes in Ca(2+) -activated BK, SK or voltage-dependent A-type potassium conductance, mediated this plasticity. In addition, bilateral microinjection of riluzole into the LDT immediately before the test session in a cocaine-induced conditioned place preference (CPP) paradigm inhibited the expression of cocaine-induced CPP. These findings suggest that intrinsic membrane plasticity in LDT cholinergic neurons is causally involved in the development of cocaine-induced addictive behaviors.

KEYWORDS:

addiction; conditioned place preference; mesocorticolimbic circuitry; neuroplasticity; persistent sodium channel

PMID:
25712572
DOI:
10.1111/ejn.12855
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center