Send to

Choose Destination
Ear Hear. 2015 Sep-Oct;36(5):497-504. doi: 10.1097/AUD.0000000000000154.

Psychophysical Map Stability in Bilateral Sequential Cochlear Implantation: Comparing Current Audiology Methods to a New Statistical Definition.

Author information

Ear Sciences Centre, School of Surgery, The University of Western Australia, Perth, Western Australia, Australia; and Ear Science Institute of Australia, Perth, Western Australia, Australia.



The purpose of this study was to establish a statistical definition for stability in cochlear implant maps. Once defined, this study aimed to compare the duration taken to achieve a stable map in first and second implants in patients who underwent sequential bilateral cochlear implantation. This article also sought to evaluate a number of factors that potentially affect map stability.


A retrospective cohort study of 33 patients with sensorineural hearing loss who received sequential bilateral cochlear implantation (Cochlear, Sydney, Australia), performed by the senior author. Psychophysical parameters of hearing threshold scores, comfort scores, and the dynamic range were measured for the apical, medial, and basal portions of the cochlear implant electrode at a range of intervals postimplantation. Stability was defined statistically as a less than 10% difference in threshold, comfort, and dynamic range scores over three consecutive mapping sessions. A senior cochlear implant audiologist, blinded to implant order and the statistical results, separately analyzed these psychophysical map parameters using current assessment methods. First and second implants were compared for duration to achieve stability, age, gender, the duration of deafness, etiology of deafness, time between the insertion of the first and second implant, and the presence or absence of preoperative hearing aids were evaluated and its relationship to stability. Statistical analysis included performing a two-tailed Student's t tests and least squares regression analysis, with a statistical significance set at p ≤ 0.05.


There was a significant positive correlation between the devised statistical definition and the current audiology methods for assessing stability, with a Pearson correlation coefficient r = 0.36 and a least squares regression slope (b) of 0.41, df(58), 95% confidence interval 0.07 to 0.55 (p = 0.004). The average duration from device switch on to stability in the first implant was 87 days using current audiology methods and 81 days using the statistical definition, with no statistically significant difference between assessment methods (p = 0.2). The duration to achieve stability in the second implant was 51 days using current audiology methods and 60 days using the statistical method, and again no difference between the two assessment methods (p = 0.13). There was a significant reduction in the time to achieve stability in second implants for both audiology and statistical methods (p < 0.001 and p = 0.02, respectively). There was a difference in duration to achieve stability based on electrode array region, with basal portions taking longer to stabilize than apical in the first implant (p = 0.02) and both apical and medial segments in second implants (p = 0.004 and p = 0.01, respectively). No factors that were evaluated in this study, including gender, age, etiology of deafness, duration of deafness, time between implant insertion, and the preoperative hearing aid status, were correlated with stability duration in either stability assessment method.


Our statistical definition can accurately predict cochlear implant map stability when compared with current audiology practices. Cochlear implants that are implanted second tend to stabilize sooner than the first, which has a significant impact on counseling before a second implant. No factors evaluated affected the duration required to achieve stability in this study.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wolters Kluwer
Loading ...
Support Center