Format

Send to

Choose Destination
PLoS One. 2015 Feb 23;10(2):e0118024. doi: 10.1371/journal.pone.0118024. eCollection 2015.

Integrated annotation and analysis of in situ hybridization images using the ImAnno system: application to the ear and sensory organs of the fetal mouse.

Author information

1
Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS, INSERM, Université de Strasbourg), BP163, 67404 Illkirch Cedex, France.
2
Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS, INSERM, Université de Strasbourg), BP163, 67404 Illkirch Cedex, France; LBGI Bioinformatique et Génomique Intégratives, ICube Laboratory and Strasbourg Federation of Translational Medecine (FMTS), University of Strasbourg and CNRS, Strasbourg, France.
3
LBGI Bioinformatique et Génomique Intégratives, ICube Laboratory and Strasbourg Federation of Translational Medecine (FMTS), University of Strasbourg and CNRS, Strasbourg, France.
4
Imaging & Microscopy Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS, INSERM, Université de Strasbourg), BP163, 67404 Illkirch Cedex, France.
5
Department of Genes and Behavior, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany.

Abstract

An in situ hybridization (ISH) study was performed on 2000 murine genes representing around 10% of the protein-coding genes present in the mouse genome using data generated by the EURExpress consortium. This study was carried out in 25 tissues of late gestation embryos (E14.5), with a special emphasis on the developing ear and on five distinct developing sensory organs, including the cochlea, the vestibular receptors, the sensory retina, the olfactory organ, and the vibrissae follicles. The results obtained from an analysis of more than 11,000 micrographs have been integrated in a newly developed knowledgebase, called ImAnno. In addition to managing the multilevel micrograph annotations performed by human experts, ImAnno provides public access to various integrated databases and tools. Thus, it facilitates the analysis of complex ISH gene expression patterns, as well as functional annotation and interaction of gene sets. It also provides direct links to human pathways and diseases. Hierarchical clustering of expression patterns in the 25 tissues revealed three main branches corresponding to tissues with common functions and/or embryonic origins. To illustrate the integrative power of ImAnno, we explored the expression, function and disease traits of the sensory epithelia of the five presumptive sensory organs. The study identified 623 genes (out of 2000) concomitantly expressed in the five embryonic epithelia, among which many (∼12%) were involved in human disorders. Finally, various multilevel interaction networks were characterized, highlighting differential functional enrichments of directly or indirectly interacting genes. These analyses exemplify an under-represention of "sensory" functions in the sensory gene set suggests that E14.5 is a pivotal stage between the developmental stage and the functional phase that will be fully reached only after birth.

PMID:
25706271
PMCID:
PMC4338146
DOI:
10.1371/journal.pone.0118024
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center