Format

Send to

Choose Destination
Exp Neurol. 2016 Jan;275 Pt 3:328-333. doi: 10.1016/j.expneurol.2015.02.011. Epub 2015 Feb 16.

White matter involvement after TBI: Clues to axon and myelin repair capacity.

Author information

1
Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA. Electronic address: regina.armstrong@usuhs.edu.
2
Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
3
Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.

Abstract

Impact-acceleration forces to the head cause traumatic brain injury (TBI) with damage in white matter tracts comprised of long axons traversing the brain. White matter injury after TBI involves both traumatic axonal injury (TAI) and myelin pathology that evolves throughout the post-injury time course. The axon response to initial mechanical forces and secondary insults follows the process of Wallerian degeneration, which initiates as a potentially reversible phase of intra-axonal damage and proceeds to an irreversible phase of axon fragmentation. Distal to sites of axon disconnection, myelin sheaths remain for prolonged periods, which may activate neuroinflammation and inhibit axon regeneration. In addition to TAI, TBI can cause demyelination of intact axons. These evolving features of axon and myelin pathology also represent opportunities for repair. In experimental TBI, demyelinated axons exhibit remyelination, which can serve to both protect axons and facilitate recovery of function. Myelin remodeling may also contribute to neuroplasticity. Efficient clearance of myelin debris is a potential target to attenuate the progression of chronic pathology. During the early phase of Wallerian degeneration, interventions that prevent the transition from reversible damage to axon disconnection warrant the highest priority, based on the poor regenerative capacity of axons in the CNS. Clinical evaluation of TBI will need to address the challenge of accurately detecting the extent and stage of axon damage. Distinguishing the complex white matter changes associated with axons and myelin is necessary for interpreting advanced neuroimaging approaches and for identifying a broader range of therapeutic opportunities to improve outcome after TBI.

KEYWORDS:

Axon degeneration; Demyelination; Diffuse axonal injury; Diffusion tensor imaging; Magnetic resonance imaging; Remyelination; Traumatic axonal injury; Traumatic brain injury; White matter injury

PMID:
25697845
DOI:
10.1016/j.expneurol.2015.02.011
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center