Format

Send to

Choose Destination
J Natl Cancer Inst. 2015 Feb 16;107(4). pii: djv012. doi: 10.1093/jnci/djv012. Print 2015 Apr.

Leveraging biospecimen resources for discovery or validation of markers for early cancer detection.

Author information

1
: Division of Cancer Control and Population Sciences (SDS, DMC, LEM, VPDR, MJK), Division of Cancer Prevention (SuS, BSK), and Division of Cancer Treatment and Diagnosis (LMM), National Cancer Institute, Bethesda, MD; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (GLA, NU); Department of Medicine, University of North Carolina, Chapel Hill, NC (JAB, DFR); Department of Radiation Oncology, Johns Hopkins Medicine, Baltimore, MD (CDB); Center for Prostate Disease Research, Department of Defense, Rockville, MD (JC); Mount Sinai Hospital, Toronto, Ontario, Canada (EPD); Center for Health Research, Kaiser Permanente, Northwest, Portland, OR (KABG); Division of Biostatistics and Epidemiology, University of Massachusetts, Amherst, MA (SEH); Division of Research, Kaiser Permanente, Oakland, CA (LHK); Group Health Research Institute, Seattle, WA (EBL); American Society of Clinical Oncology, Alexandria, VA (RLS); Genomic Health, Inc., Redwood City, CA (StS); Biostatistics Center, Massachusetts General Hospital, Boston, MA (SJS); Office of Public Health Genomics, Centers for Disease Control and Prevention, Atlanta, GA (MJK). schullys@mail.nih.gov.
2
: Division of Cancer Control and Population Sciences (SDS, DMC, LEM, VPDR, MJK), Division of Cancer Prevention (SuS, BSK), and Division of Cancer Treatment and Diagnosis (LMM), National Cancer Institute, Bethesda, MD; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (GLA, NU); Department of Medicine, University of North Carolina, Chapel Hill, NC (JAB, DFR); Department of Radiation Oncology, Johns Hopkins Medicine, Baltimore, MD (CDB); Center for Prostate Disease Research, Department of Defense, Rockville, MD (JC); Mount Sinai Hospital, Toronto, Ontario, Canada (EPD); Center for Health Research, Kaiser Permanente, Northwest, Portland, OR (KABG); Division of Biostatistics and Epidemiology, University of Massachusetts, Amherst, MA (SEH); Division of Research, Kaiser Permanente, Oakland, CA (LHK); Group Health Research Institute, Seattle, WA (EBL); American Society of Clinical Oncology, Alexandria, VA (RLS); Genomic Health, Inc., Redwood City, CA (StS); Biostatistics Center, Massachusetts General Hospital, Boston, MA (SJS); Office of Public Health Genomics, Centers for Disease Control and Prevention, Atlanta, GA (MJK).

Abstract

Validation of early detection cancer biomarkers has proven to be disappointing when initial promising claims have often not been reproducible in diagnostic samples or did not extend to prediagnostic samples. The previously reported lack of rigorous internal validity (systematic differences between compared groups) and external validity (lack of generalizability beyond compared groups) may be effectively addressed by utilizing blood specimens and data collected within well-conducted cohort studies. Cohort studies with prediagnostic specimens (eg, blood specimens collected prior to development of clinical symptoms) and clinical data have recently been used to assess the validity of some early detection biomarkers. With this background, the Division of Cancer Control and Population Sciences (DCCPS) and the Division of Cancer Prevention (DCP) of the National Cancer Institute (NCI) held a joint workshop in August 2013. The goal was to advance early detection cancer research by considering how the infrastructure of cohort studies that already exist or are being developed might be leveraged to include appropriate blood specimens, including prediagnostic specimens, ideally collected at periodic intervals, along with clinical data about symptom status and cancer diagnosis. Three overarching recommendations emerged from the discussions: 1) facilitate sharing of existing specimens and data, 2) encourage collaboration among scientists developing biomarkers and those conducting observational cohort studies or managing healthcare systems with cohorts followed over time, and 3) conduct pilot projects that identify and address key logistic and feasibility issues regarding how appropriate specimens and clinical data might be collected at reasonable effort and cost within existing or future cohorts.

PMID:
25688116
PMCID:
PMC4342676
DOI:
10.1093/jnci/djv012
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center