Format

Send to

Choose Destination
PLoS Genet. 2015 Feb 13;11(2):e1004850. doi: 10.1371/journal.pgen.1004850. eCollection 2015 Feb.

A multi-megabase copy number gain causes maternal transmission ratio distortion on mouse chromosome 2.

Author information

1
Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America; Carolina Center for Genome Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.
2
Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.
3
The Jackson Laboratory, Bar Harbor, Maine, United States of America.
4
Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America; Carolina Center for Genome Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.
5
Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America.
6
Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America.
7
National Toxicology Program, National Institute of Environmental Sciences, NIH, Research Triangle Park, North Carolina, United States of America.
8
Department of Biology, University of California Riverside, Riverside, California, United States of America.
9
Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America.
10
Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.
11
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.
12
Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, United States of America.
13
Department of Veterinary Pathobiology and Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, United States of America.

Abstract

Significant departures from expected Mendelian inheritance ratios (transmission ratio distortion, TRD) are frequently observed in both experimental crosses and natural populations. TRD on mouse Chromosome (Chr) 2 has been reported in multiple experimental crosses, including the Collaborative Cross (CC). Among the eight CC founder inbred strains, we found that Chr 2 TRD was exclusive to females that were heterozygous for the WSB/EiJ allele within a 9.3 Mb region (Chr 2 76.9 - 86.2 Mb). A copy number gain of a 127 kb-long DNA segment (designated as responder to drive, R2d) emerged as the strongest candidate for the causative allele. We mapped R2d sequences to two loci within the candidate interval. R2d1 is located near the proximal boundary, and contains a single copy of R2d in all strains tested. R2d2 maps to a 900 kb interval, and the number of R2d copies varies from zero in classical strains (including the mouse reference genome) to more than 30 in wild-derived strains. Using real-time PCR assays for the copy number, we identified a mutation (R2d2WSBdel1) that eliminates the majority of the R2d2WSB copies without apparent alterations of the surrounding WSB/EiJ haplotype. In a three-generation pedigree segregating for R2d2WSBdel1, the mutation is transmitted to the progeny and Mendelian segregation is restored in females heterozygous for R2d2WSBdel1, thus providing direct evidence that the copy number gain is causal for maternal TRD. We found that transmission ratios in R2d2WSB heterozygous females vary between Mendelian segregation and complete distortion depending on the genetic background, and that TRD is under genetic control of unlinked distorter loci. Although the R2d2WSB transmission ratio was inversely correlated with average litter size, several independent lines of evidence support the contention that female meiotic drive is the cause of the distortion. We discuss the implications and potential applications of this novel meiotic drive system.

PMID:
25679959
PMCID:
PMC4334553
DOI:
10.1371/journal.pgen.1004850
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center