Send to

Choose Destination
Biochemistry. 1989 Mar 21;28(6):2533-9.

Characterization of site-directed mutants in the lac permease of Escherichia coli. 2. Glutamate-325 replacements.

Author information

Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110.


lac permease with Ala in place of Glu325 was solubilized from the membrane, purified, and reconstituted into proteoliposomes. The reconstituted molecule is completely unable to catalyze lactose/H+ symport but catalyzes exchange and counterflow at least as well as wild-type permease. In addition, Ala325 permease catalyzes downhill lactose influx without concomitant H+ translocation and binds p-nitrophenyl alpha-D-galactopyranoside with a KD only slightly higher than that of wild-type permease. Studies with right-side-out membrane vesicles demonstrate that replacement of Glu325 with Gln, His, Val, Cys, or Trp results in behavior similar to that observed with Ala in place of Glu325. On the other hand, permease with Asp in place of Glu325 catalyzes lactose/H+ symport about 20% as well as wild-type permease. The results indicate that an acidic residue at position 325 is essential for lactose/H+ symport and that hydrogen bonding at this position is insufficient. Taken together with previous results and those presented in the following paper [Lee, J. A., Püttner, I. B., & Kaback, H. R. (1989) Biochemistry (third paper of three in this issue)], the findings are consistent with the idea that Arg302, His322, and Glu325 may be components of a H+ relay system that plays an important role in the coupled translocation of lactose and H+.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center