Send to

Choose Destination
Neuroscience. 1989;29(2):401-12.

Synaptic activation of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors in the mossy fibre pathway in adult and immature rat cerebellar slices.

Author information

Department of Physiology, University of Liverpool, U.K.


The participation of excitatory amino acid receptors in mossy fibre-granule cell synapses in lobule VIa of adult and immature rat cerebellar slices was investigated using an extracellular grease-gap technique. For the immature slices, the age selected (14 days after birth) was one at which the sensitivity of granule cells to exogenous N-methyl-D-aspartate is much higher than in the adult. The principal synaptic potentials observed after low-frequency electrical stimulation of the white matter resembled closely those found to be centred in the granule cell layer in field potential studies in the cat in vivo. They comprised a short latency negative potential, a slow negative wave and, in the adult, a further late negative wave. In the adult, with 1.2 mM Mg2+ in the perfusing solution, none of these potentials was significantly affected by the N-methyl-D-aspartate antagonist, 2-amino-5-phosphonovalerate, but they were all markedly inhibited by the broad spectrum antagonist, kynurenate, and, more potently, by the selective non-N-methyl-D-aspartate receptor blocker, 6-cyano-2,3-dihydroxy-7-nitro-quinoxaline. After removal of Mg2+, which has a blocking action on the ion channels associated with N-methyl-D-aspartate receptors, the size of all the potentials increased. The increase in the short latency potential was insensitive to 2-amino-5-phosphonovalerate but a component of the slow negative wave (and of the late negative wave) was reduced back to control levels by the antagonist. Application of 6-cyano-2,3-dihydroxy-7-nitro-quinoxaline (10 microM) in Mg2+-free solution revealed, in near isolation, a slow wave (latency to peak, 28 ms) which could be abolished by 2-amino-5-phosphonovalerate. In the immature slices, bathed in normal (Mg2+-containing) medium, 2-amino-5-phosphonovalerate caused a small reduction in the short latency potential and inhibited a component of the slow negative wave which could, again, be observed in relative isolation after perfusion of 6-cyano-2,3-dihydroxy-7-nitro-quinoxaline. Removal of Mg2+ increased the amplitudes of the short latency potential and the slow negative wave in a manner which was sensitive to 2-amino-5-phosphonovalerate and increased the size of the slow, 6-cyano-2,3-dihydroxy-7-nitro-quinoxaline-resistant wave. It is concluded that glutamate is likely to be the transmitter released by mossy fibres, at least those innervating lobule VIa.(ABSTRACT TRUNCATED AT 400 WORDS).

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center