Format

Send to

Choose Destination
Stem Cells Transl Med. 2015 Mar;4(3):261-8. doi: 10.5966/sctm.2014-0119. Epub 2015 Feb 9.

Functional maintenance of differentiated embryoid bodies in microfluidic systems: a platform for personalized medicine.

Author information

1
BAMM Labs, Canary Center at Stanford for Early Cancer Detection, Stanford University School of Medicine, Palo Alto, California, USA; BAMM Labs, Department of Medicine and Center for Infertility and Reproductive Surgery, Obstetrics Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
2
BAMM Labs, Canary Center at Stanford for Early Cancer Detection, Stanford University School of Medicine, Palo Alto, California, USA; BAMM Labs, Department of Medicine and Center for Infertility and Reproductive Surgery, Obstetrics Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA utkan@stanford.edu ranchan@partners.org.

Abstract

Hormone replacement therapies have become important for treating diseases such as premature ovarian failure or menopausal complications. The clinical use of bioidentical hormones might significantly reduce some of the potential risks reportedly associated with the use of synthetic hormones. In the present study, we demonstrate the utility and advantage of a microfluidic chip culture system to enhance the development of personalized, on-demand, treatment modules using embryoid bodies (EBs). Functional EBs cultured on microfluidic chips represent a platform for personalized, patient-specific treatment cassettes that can be cryopreserved until required for treatment. We assessed the viability, differentiation, and functionality of EBs cultured and cryopreserved in this system. During extended microfluidic culture, estradiol, progesterone, testosterone, and anti-müllerian hormone levels were measured, and the expression of differentiated steroidogenic cells was confirmed by immunocytochemistry assay for the ovarian tissue markers anti-müllerian hormone receptor type II, follicle-stimulating hormone receptor, and inhibin β-A and the estrogen biosynthesis enzyme aromatase. Our studies showed that under microfluidic conditions, differentiated steroidogenic EBs continued to secrete estradiol and progesterone at physiologically relevant concentrations (30-120 pg/ml and 150-450 pg/ml, respectively) for up to 21 days. Collectively, we have demonstrated for the first time the feasibility of using a microfluidic chip system with continuous flow for the differentiation and extended culture of functional steroidogenic stem cell-derived EBs, the differentiation of EBs into cells expressing ovarian antigens in a microfluidic system, and the ability to cryopreserve this system with restoration of growth and functionality on thawing. These results present a platform for the development of a new therapeutic system for personalized medicine.

KEYWORDS:

Cryopreservation; Hormone secretion; Microenvironment; Microphysiological systems; Reproductive medicine; Stem cells

PMID:
25666845
PMCID:
PMC4339847
DOI:
10.5966/sctm.2014-0119
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center