Format

Send to

Choose Destination
J Innate Immun. 2015;7(4):405-16. doi: 10.1159/000369972. Epub 2015 Feb 5.

HMGB1 Binds to Lipoteichoic Acid and Enhances TNF-α and IL-6 Production through HMGB1-Mediated Transfer of Lipoteichoic Acid to CD14 and TLR2.

Author information

1
Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea.

Abstract

Lipoteichoic acid (LTA) is a component of the cell wall of Gram-positive bacteria and induces a toll-like receptor 2 (TLR2)-mediated inflammatory response upon initial binding to lipopolysaccharide-binding protein (LBP) and subsequent transfer to CD14. In this study, we identified a novel role for the nuclear protein high-mobility group box 1 (HMGB1) in LTA-mediated inflammation. Results of ELISA, surface plasmon resonance and native PAGE electrophoretic mobility shift analyses indicated that HMGB1 binds to LTA in a concentration-dependent manner and that this binding is inhibited by LBP. Native PAGE, fluorescence-based transfer and confocal imaging analyses indicated that HMGB1 catalytically disaggregates LTA and transfers LTA to CD14. NF-κB p65 nuclear transmigration, degradation of IκBα and reporter assay results demonstrated that NF-κB activity in HEK293-hTLR2/6 cells is significantly upregulated by a mixture of LTA and soluble CD14 in the presence of HMGB1. Furthermore, the production of TNF-α and IL-6 in J774A.1 and RAW264.7 cells increased significantly following treatment with a mixture of LTA and HMGB1 compared with treatment with LTA or HMGB1 alone. Thus, we propose that HMGB1 plays an important role in LTA-mediated inflammation by binding to and transferring LTA to CD14, which is subsequently transferred to TLR2 to induce an inflammatory response.

PMID:
25660311
DOI:
10.1159/000369972
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for S. Karger AG, Basel, Switzerland
Loading ...
Support Center