Format

Send to

Choose Destination
See comment in PubMed Commons below
Front Microbiol. 2015 Jan 14;5:784. doi: 10.3389/fmicb.2014.00784. eCollection 2014.

Marine sediments microbes capable of electrode oxidation as a surrogate for lithotrophic insoluble substrate metabolism.

Author information

1
Department of Earth Sciences, University of Southern California, Los Angeles Los Angeles, CA, USA.
2
Department of Molecular and Computational Biology, University of Southern California, Los Angeles Los Angeles, CA, USA.
3
Department Marine and Environmental Biology, University of Southern California, Los Angeles Los Angeles, CA, USA.
4
Department of Applied Chemistry, University of Tokyo Tokyo, Japan.
5
Department of Earth Sciences, University of Southern California, Los Angeles Los Angeles, CA, USA ; Department of Molecular and Computational Biology, University of Southern California, Los Angeles Los Angeles, CA, USA ; Department Marine and Environmental Biology, University of Southern California, Los Angeles Los Angeles, CA, USA.

Abstract

Little is known about the importance and/or mechanisms of biological mineral oxidation in sediments, partially due to the difficulties associated with culturing mineral-oxidizing microbes. We demonstrate that electrochemical enrichment is a feasible approach for isolation of microbes capable of gaining electrons from insoluble minerals. To this end we constructed sediment microcosms and incubated electrodes at various controlled redox potentials. Negative current production was observed in incubations and increased as redox potential decreased (tested -50 to -400 mV vs. Ag/AgCl). Electrode-associated biomass responded to the addition of nitrate and ferric iron as terminal electron acceptors in secondary sediment-free enrichments. Elemental sulfur, elemental iron and amorphous iron sulfide enrichments derived from electrode biomass demonstrated products indicative of sulfur or iron oxidation. The microbes isolated from these enrichments belong to the genera Halomonas, Idiomarina, Marinobacter, and Pseudomonas of the Gammaproteobacteria, and Thalassospira and Thioclava from the Alphaproteobacteria. Chronoamperometry data demonstrates sustained electrode oxidation from these isolates in the absence of alternate electron sources. Cyclic voltammetry demonstrated the variability in dominant electron transfer modes or interactions with electrodes (i.e., biofilm, planktonic or mediator facilitated) and the wide range of midpoint potentials observed for each microbe (from 8 to -295 mV vs. Ag/AgCl). The diversity of extracellular electron transfer mechanisms observed in one sediment and one redox condition, illustrates the potential importance and abundance of these interactions. This approach has promise for increasing our understanding the extent and diversity of microbe mineral interactions, as well as increasing the repository of microbes available for electrochemical applications.

KEYWORDS:

Halomonas; Marinobacter; Pseudomonas; electromicrobiology; geobiology; iron oxidation; lithotrophy; sulfur oxidation

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Frontiers Media SA Icon for PubMed Central
    Loading ...
    Support Center