Rapid precipitation: an alternative to solvent casting for organic solar cells

Chemphyschem. 2015 Apr 27;16(6):1231-8. doi: 10.1002/cphc.201402758. Epub 2015 Jan 29.

Abstract

Rapid precipitation, immersion of a liquid formulation into a nonsolvent, is compared with drop casting for fabricating organic solar cells. Blends comprising poly-3-hexylthiophene (P3HT), phenyl-C61-butyric acid methyl ester (PCBM), and chlorobenzene were processed into bulk samples by using two distinct routes: rapid precipitation and drop casting. The resulting structure, phases, and crystallinity were analyzed by using small-angle neutron scattering, X-ray diffraction, differential scanning calorimetry, and muon spin resonance. Rapid precipitation was found to induce a finely structured phase separation between PCBM and P3HT, with 65 wt % crystallinity in the P3HT phase. In contrast, solvent casting resulted in a mixed PCBM/P3HT phase with only 43 wt % P3HT crystallinity. The structural advantages conferred by rapid precipitation were shown to persist following intense thermal treatments.

Keywords: crystal growth; organic solar cells; phase transitions; rapid precipitation; small-angle neutron scattering.