The synthesis and antitumor activity of twelve galloyl glucosides

Molecules. 2015 Jan 27;20(2):2034-60. doi: 10.3390/molecules20022034.

Abstract

Twelve galloyl glucosides 1-12, showing diverse substitution patterns with two or three galloyl groups, were synthesized using commercially available, low-cost D-glucose and gallic acid as starting materials. Among them, three compounds, methyl 3,6-di-O-galloyl-α-D-glucopyranoside (9), ethyl 2,3-di-O-galloyl-α-D-glucopyranoside (11) and ethyl 2,3-di-O-galloyl-β-D-glucopyranoside (12), are new compounds and other six, 1,6-di-O-galloyl-β-D-glucopyranose (1), 1,4,6-tri-O-galloyl-β-D-glucopyranose (2), 1,2-di-O-galloyl-β-D-glucopyranose (3), 1,3-di-O-galloyl-β-D-glucopyranose (4), 1,2,3-tri-O-galloyl-α-D-glucopyranose (6) and methyl 3,4,6-tri-O-galloyl-α-D-glucopyranoside (10), were synthesized for the first time in the present study. In in vitro MTT assay, 1-12 inhibited human cancer K562, HL-60 and HeLa cells with inhibition rates ranging from 64.2% to 92.9% at 100 μg/mL, and their IC50 values were determined to be varied in 17.2-124.7 μM on the tested three human cancer cell lines. In addition, compounds 1-12 inhibited murine sarcoma S180 cells with inhibition rates ranging from 38.7% to 52.8% at 100 μg/mL in the in vitro MTT assay, and in vivo antitumor activity of 1 and 2 was also detected in murine sarcoma S180 tumor-bearing Kunming mice using taxol as positive control.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / chemical synthesis*
  • Antineoplastic Agents / pharmacology
  • Cell Proliferation / drug effects
  • Drug Screening Assays, Antitumor
  • Fluorouracil / pharmacology
  • Gallic Acid / chemistry
  • Glucose / chemistry
  • Glucosides / chemical synthesis*
  • Glucosides / pharmacology
  • HL-60 Cells
  • HeLa Cells
  • Humans
  • Inhibitory Concentration 50
  • K562 Cells
  • Mice
  • Neoplasm Transplantation

Substances

  • Antineoplastic Agents
  • Glucosides
  • Gallic Acid
  • Glucose
  • Fluorouracil