Format

Send to

Choose Destination
Cell Tissue Res. 2015 Apr;360(1):71-86. doi: 10.1007/s00441-014-2087-2. Epub 2015 Jan 27.

Quantum dots for quantitative imaging: from single molecules to tissue.

Author information

1
Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, Ore., USA, vuta@ohsu.edu.

Abstract

Since their introduction to biological imaging, quantum dots (QDs) have progressed from a little known, but attractive, technology to one that has gained broad application in many areas of biology. The versatile properties of these fluorescent nanoparticles have allowed investigators to conduct biological studies with extended spatiotemporal capabilities that were previously not possible. In this review, we focus on QD applications that provide enhanced quantitative information concerning protein dynamics and localization, including single particle tracking and immunohistochemistry, and finish by examining the prospects of upcoming applications, such as correlative light and electron microscopy and super-resolution. Advances in single molecule imaging, including multi-color and three-dimensional QD tracking, have provided new insights into the mechanisms of cell signaling and protein trafficking. New forms of QD tracking in vivo have allowed the observation of biological processes at molecular level resolution in the physiological context of the whole animal. Further methodological development of multiplexed QD-based immunohistochemistry assays should enable more quantitative analysis of key proteins in tissue samples. These advances highlight the unique quantitative data sets that QDs can provide to further our understanding of biological and disease processes.

PMID:
25620410
PMCID:
PMC4382208
DOI:
10.1007/s00441-014-2087-2
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center