Format

Send to

Choose Destination
Structure. 2015 Feb 3;23(2):280-9. doi: 10.1016/j.str.2014.12.008. Epub 2015 Jan 22.

Structural plasticity of helical nanotubes based on coiled-coil assemblies.

Author information

1
Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA. Electronic address: egelman@virginia.edu.
2
Department of Chemistry, Emory University, Atlanta, GA 30322, USA.
3
Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
4
Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA.
5
Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
6
Department of Chemistry, Emory University, Atlanta, GA 30322, USA. Electronic address: vcontic@emory.edu.

Abstract

Numerous instances can be seen in evolution in which protein quaternary structures have diverged while the sequences of the building blocks have remained fairly conserved. However, the path through which such divergence has taken place is usually not known. We have designed two synthetic 29-residue α-helical peptides, based on the coiled-coil structural motif, that spontaneously self-assemble into helical nanotubes in vitro. Using electron cryomicroscopy with a newly available direct electron detection capability, we can achieve near-atomic resolution of these thin structures. We show how conservative changes of only one or two amino acids result in dramatic changes in quaternary structure, in which the assemblies can be switched between two very different forms. This system provides a framework for understanding how small sequence changes in evolution can translate into very large changes in supramolecular structure, a phenomenon that may have significant implications for the de novo design of synthetic peptide assemblies.

PMID:
25620001
PMCID:
PMC4318749
DOI:
10.1016/j.str.2014.12.008
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center