Format

Send to

Choose Destination
FASEB J. 2015 May;29(5):1930-9. doi: 10.1096/fj.14-259531. Epub 2015 Jan 22.

Transient delivery of modified mRNA encoding TERT rapidly extends telomeres in human cells.

Author information

1
*Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Clinical Sciences Research Center, Stanford University School of Medicine, Stanford, California, USA; Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, California, USA; SpectraCell Laboratories, Inc., Houston, Texas, USA; and Department of Mechanical Engineering, Stanford University, Stanford, California, USA.
2
*Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Clinical Sciences Research Center, Stanford University School of Medicine, Stanford, California, USA; Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, California, USA; SpectraCell Laboratories, Inc., Houston, Texas, USA; and Department of Mechanical Engineering, Stanford University, Stanford, California, USA hblau@stanford.edu.

Abstract

Telomere extension has been proposed as a means to improve cell culture and tissue engineering and to treat disease. However, telomere extension by nonviral, nonintegrating methods remains inefficient. Here we report that delivery of modified mRNA encoding TERT to human fibroblasts and myoblasts increases telomerase activity transiently (24-48 h) and rapidly extends telomeres, after which telomeres resume shortening. Three successive transfections over a 4 d period extended telomeres up to 0.9 kb in a cell type-specific manner in fibroblasts and myoblasts and conferred an additional 28 ± 1.5 and 3.4 ± 0.4 population doublings (PDs), respectively. Proliferative capacity increased in a dose-dependent manner. The second and third transfections had less effect on proliferative capacity than the first, revealing a refractory period. However, the refractory period was transient as a later fourth transfection increased fibroblast proliferative capacity by an additional 15.2 ± 1.1 PDs, similar to the first transfection. Overall, these treatments led to an increase in absolute cell number of more than 10(12)-fold. Notably, unlike immortalized cells, all treated cell populations eventually stopped increasing in number and expressed senescence markers to the same extent as untreated cells. This rapid method of extending telomeres and increasing cell proliferative capacity without risk of insertional mutagenesis should have broad utility in disease modeling, drug screening, and regenerative medicine.

KEYWORDS:

nucleoside modified mRNA; proliferative capacity; senescence; telomerase

PMID:
25614443
PMCID:
PMC4415018
DOI:
10.1096/fj.14-259531
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center