Format

Send to

Choose Destination
Pulm Circ. 2014 Dec;4(4):619-29. doi: 10.1086/678508.

The Sugen 5416/hypoxia mouse model of pulmonary hypertension revisited: long-term follow-up.

Author information

1
Department of Anesthesia, Perioperative, and Pain Medicine, Division of Critical Care Medicine, Boston Children's Hospital, Boston, Massachusetts, USA ; SHV and GH contributed equally to this work.
2
Department of Medicine, Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA ; Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany ; SHV and GH contributed equally to this work.
3
Department of Anesthesia, Perioperative, and Pain Medicine, Division of Critical Care Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.
4
Department of Medicine, Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.

Abstract

The combination of a vascular endothelial growth factor receptor antagonist, Sugen 5416 (SU5416), and chronic hypoxia is known to cause pronounced pulmonary hypertension (PH) with angioobliterative lesions in rats and leads to exaggerated PH in mice as well. We sought to determine whether weekly SU5416 injections during 3 weeks of hypoxia leads to long-term development of angioobliterative lesions and sustained or progressive PH in mice. Male C57BL/6J mice were injected with SU5416 (SuHx) or vehicle (VehHx) weekly during 3 weeks of exposure to 10% oxygen. Echocardiographic and invasive measures of hemodynamics and pulmonary vascular morphometry were performed after the 3-week hypoxic exposure and after 10 weeks of recovery in normoxia. SuHx led to higher right ventricular (RV) systolic pressure and RV hypertrophy than VehHx after 3 weeks of hypoxia. Ten weeks after hypoxic exposure, RV systolic pressure decreased but remained elevated in SuHx mice compared with VehHx or normoxic control mice, but RV hypertrophy had resolved. After 3 weeks of hypoxia and 10 weeks of follow-up in normoxia, tricuspid annular plane systolic excursion was significantly decreased, indicating decreased systolic RV function. Very few angioobliterative lesions were found at the 10-week follow-up time point in SuHx mouse lungs. In conclusion, SU5416 combined with 3 weeks of hypoxia causes a more profound PH phenotype in mice than hypoxia alone. PH persists over 10 weeks of normoxic follow-up in SuHx mice, but significant angioobliterative lesions do not occur, and neither PH nor RV dysfunction worsens. The SuHx mouse model is a useful adjunct to other PH models, but the search will continue for a mouse model that better recapitulates the human phenotype.

KEYWORDS:

Sugen 5416, hypoxia; animal model; pulmonary hypertension; right ventricle

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center