Dual conical conducting filament model in resistance switching TiO2 thin films

Sci Rep. 2015 Jan 19:5:7844. doi: 10.1038/srep07844.

Abstract

The resetting behaviors of Pt/TiO2/Pt resistive switching (RS) cell in unipolar RS operations were studied in detail through an experiment and by modeling. The experiment showed that the apparently highly arbitrary resetting current-voltage (I-V) curves could be grouped into three types: normal, delayed, and abnormal behaviors. A dual conical conducting filament (CF) model was conceived, and their electrothermal behaviors were analytically described from the heat-balance and charge-transport equations. The almost spontaneous resetting behavior of the normal reset could be easily understood from the mutually constructive interference effect between the Joule heating and temperature-dependent resistance effect along the CF. The delayed reset could be explained by the time-dependent increase in the reset voltage during the rest process, which was most probably induced in the more conical-shaped CF. The abnormal reset could be understood from the temporal transfer of oxygen ions near the kink positions of the two different-diameter portions of the more cylindrical CFs, which temporally decreases the overall resistance immediately prior for the actual reset to occur. The accuracy of the dual conical CF model was further confirmed by adopting a more thorough electrothermal simulation package, COMSOL.

Publication types

  • Research Support, Non-U.S. Gov't