Format

Send to

Choose Destination
J Biol Chem. 2015 Feb 27;290(9):5926-39. doi: 10.1074/jbc.M114.610899. Epub 2015 Jan 15.

Silver nanoparticles induce degradation of the endoplasmic reticulum stress sensor activating transcription factor-6 leading to activation of the NLRP-3 inflammasome.

Author information

1
From the Laboratoire de recherche en inflammation et physiologie des granulocytes, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Québec H7V1B7, Canada J-Christophe.Simard@iaf.inrs.ca.
2
From the Laboratoire de recherche en inflammation et physiologie des granulocytes, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Québec H7V1B7, Canada.
3
From the Laboratoire de recherche en inflammation et physiologie des granulocytes, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Québec H7V1B7, Canada Denis.girard@iaf.inrs.ca.

Abstract

In the past decade, the increasing amount of nanoparticles (NP) and nanomaterials used in multiple applications led the scientific community to investigate the potential toxicity of NP. Many studies highlighted the cytotoxic effects of various NP, including titanium dioxide, zinc oxide, and silver nanoparticles (AgNP). In a few studies, endoplasmic reticulum (ER) stress was found to be associated with NP cytotoxicity leading to apoptosis in different cell types. In this study, we report for the first time that silver nanoparticles of 15 nm (AgNP15), depending on the concentration, induced different signature ER stress markers in human THP-1 monocytes leading to a rapid ER stress response with degradation of the ATF-6 sensor. Also, AgNP15 induced pyroptosis and activation of the NLRP-3 inflammasome as demonstrated by the processing and increased activity of caspase-1 and secretion of IL-1β and ASC (apoptosis-associated speck-like protein containing a CARD domain) pyroptosome formation. Transfection of THP-1 cells with siRNA targeting NLRP-3 decreased the AgNP15-induced IL-1β production. The absence of caspase-4 expression resulted in a significant reduction of pro-IL-1β. However, caspase-1 activity was significantly higher in caspase-4-deficient cells when compared with WT cells. Inhibition of AgNP15-induced ATF-6 degradation with Site-2 protease inhibitors completely blocked the effect of AgNP15 on pyroptosis and secretion of IL-1β, indicating that ATF-6 is crucial for the induction of this type of cell death. We conclude that AgNP15 induce degradation of the ER stress sensor ATF-6, leading to activation of the NLRP-3 inflammasome regulated by caspase-4 in human monocytes.

KEYWORDS:

Caspase; Caspase 1 (CASP1); Caspase 4; Endoplasmic Reticulum Stress (ER Stress); Inflammasome; NLRP-3 Inflammasome; Nanotechnology; Pyroptosis; Silver Nanoparticles

PMID:
25593314
PMCID:
PMC4342498
DOI:
10.1074/jbc.M114.610899
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center