Format

Send to

Choose Destination
BMC Biol. 2015 Jan 16;13:3. doi: 10.1186/s12915-014-0113-1.

A fast recoiling silk-like elastomer facilitates nanosecond nematocyst discharge.

Author information

1
Department of Molecular Evolution and Genomics, University of Heidelberg, Centre for Organismal Studies, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany. Anna.beckmann@cos.uni-heidelberg.de.
2
Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany. senbo.xiao@gmail.com.
3
Applied Physics and Center for NanoScience, Ludwig Maximilian University, Amalienstr. 54, 80799, München, Germany. jochen.Mueller@physik.uni-muenchen.de.
4
Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany. davide.mercadante@h-its.org.
5
Department of Molecular Evolution and Genomics, University of Heidelberg, Centre for Organismal Studies, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany. kontakt@timm-nuechter.de.
6
Kirchhoff Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69210, Heidelberg, Germany. nkroeger@kip.uni-heidelberg.de.
7
Dioptic GmbH, Bergstraße 92A, D-69469, Weinheim, Germany. langhojer@dioptic.de.
8
Kirchhoff Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69210, Heidelberg, Germany. wolfgang.petrich@kip.uni-heidelberg.de.
9
Department of Molecular Evolution and Genomics, University of Heidelberg, Centre for Organismal Studies, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany. thomas.holstein@cos.uni-heidelberg.de.
10
Applied Physics and Center for NanoScience, Ludwig Maximilian University, Amalienstr. 54, 80799, München, Germany. martin.Benoit@physik.uni-muenchen.de.
11
Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany. frauke.graeter@h-its.org.
12
Department of Molecular Evolution and Genomics, University of Heidelberg, Centre for Organismal Studies, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany. suat.oezbek@cos.uni-heidelberg.de.

Abstract

BACKGROUND:

The discharge of the Cnidarian stinging organelle, the nematocyst, is one of the fastest processes in biology and involves volume changes of the highly pressurised (150 bar) capsule of up to 50%. Hitherto, the molecular basis for the unusual biomechanical properties of nematocysts has been elusive, as their structure was mainly defined as a stress-resistant collagenous matrix.

RESULTS:

Here, we characterise Cnidoin, a novel elastic protein identified as a structural component of Hydra nematocysts. Cnidoin is expressed in nematocytes of all types and immunostainings revealed incorporation into capsule walls and tubules concomitant with minicollagens. Similar to spider silk proteins, to which it is related at sequence level, Cnidoin possesses high elasticity and fast coiling propensity as predicted by molecular dynamics simulations and quantified by force spectroscopy. Recombinant Cnidoin showed a high tendency for spontaneous aggregation to bundles of fibrillar structures.

CONCLUSIONS:

Cnidoin represents the molecular factor involved in kinetic energy storage and release during the ultra-fast nematocyst discharge. Furthermore, it implies an early evolutionary origin of protein elastomers in basal metazoans.

PMID:
25592740
PMCID:
PMC4321713
DOI:
10.1186/s12915-014-0113-1
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center