Format

Send to

Choose Destination
Am J Physiol Renal Physiol. 2015 Mar 15;308(6):F627-38. doi: 10.1152/ajprenal.00222.2014. Epub 2015 Jan 13.

Expression of a dominant negative PKA mutation in the kidney elicits a diabetes insipidus phenotype.

Author information

1
Department of Pharmacology, University of Washington, Seattle, Washington.
2
Department of Pharmacology, University of Washington, Seattle, Washington mcknight@uw.edu.

Abstract

PKA plays a critical role in water excretion through regulation of the production and action of the antidiuretic hormone arginine vasopressin (AVP). The AVP prohormone is produced in the hypothalamus, where its transcription is regulated by cAMP. Once released into the circulation, AVP stimulates antidiuresis through activation of vasopressin 2 receptors in renal principal cells. Vasopressin 2 receptor activation increases cAMP and activates PKA, which, in turn, phosphorylates aquaporin (AQP)2, triggering apical membrane accumulation, increased collecting duct permeability, and water reabsorption. We used single-minded homolog 1 (Sim1)-Cre recombinase-mediated expression of a dominant negative PKA regulatory subunit (RIαB) to disrupt kinase activity in vivo and assess the role of PKA in fluid homeostasis. RIαB expression gave rise to marked polydipsia and polyuria; however, neither hypothalamic Avp mRNA expression nor urinary AVP levels were attenuated, indicating a primary physiological effect on the kidney. RIαB mice displayed a marked deficit in urinary concentrating ability and greatly reduced levels of AQP2 and phospho-AQP2. Dehydration induced Aqp2 mRNA in the kidney of both control and RIαB-expressing mice, but AQP2 protein levels were still reduced in RIαB-expressing mutants, and mice were unable to fully concentrate their urine and conserve water. We conclude that partial PKA inhibition in the kidney leads to posttranslational effects that reduce AQP2 protein levels and interfere with apical membrane localization. These findings demonstrate a distinct physiological role for PKA signaling in both short- and long-term regulation of AQP2 and characterize a novel mouse model of diabetes insipidus.

KEYWORDS:

aquaporin-2; arginine vasopressin; cAMP; principal cell; protein kinase A

PMID:
25587115
PMCID:
PMC4360038
DOI:
10.1152/ajprenal.00222.2014
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center