Send to

Choose Destination
Evol Appl. 2008 Nov;1(4):535-86. doi: 10.1111/j.1752-4571.2008.00036.x. Epub 2008 Jun 2.

How well can captive breeding programs conserve biodiversity? A review of salmonids.

Author information

Department of Biology, Dalhousie University Halifax, NS, Canada.


Captive breeding programs are increasingly being initiated to prevent the imminent extinction of endangered species and/or populations. But how well can they conserve genetic diversity and fitness, or re-establish self-sustaining populations in the wild? A review of these complex questions and related issues in salmonid fishes reveals several insights and uncertainties. Most programs can maintain genetic diversity within populations over several generations, but available research suggests the loss of fitness in captivity can be rapid, its magnitude probably increasing with the duration in captivity. Over the long-term, there is likely tremendous variation between (i) programs in their capacity to maintain genetic diversity and fitness, and (ii) species or even intraspecific life-history types in both the severity and manner of fitness-costs accrued. Encouragingly, many new theoretical and methodological approaches now exist for current and future programs to potentially reduce these effects. Nevertheless, an unavoidable trade-off exists between conserving genetic diversity and fitness in certain instances, such as when captive-bred individuals are temporarily released into the wild. Owing to several confounding factors, there is also currently little evidence that captive-bred lines of salmonids can or cannot be reintroduced as self-sustaining populations. Most notably, the root causes of salmonid declines have not been mitigated where captive breeding programs exist. Little research has also addressed under what conditions an increase in population abundance due to captive-rearing might offset fitness reductions induced in captivity. Finally, more empirical investigation is needed to evaluate the genetic/fitness benefits and risks associated with (i) maintaining captive broodstocks as either single or multiple populations within one or more facilities, (ii) utilizing cryopreservation or surrogate broodstock technologies, and (iii) adopting other alternatives to captive-rearing such as translocations to new habitats. Management recommendations surrounding these issues are proposed, with the aim of facilitating meta-analyses and more general principles or guidelines for captive-breeding. These include the need for the following: (i) captive monitoring to involve, a priori, greater application of hypothesis testing through the use of well-designed experiments and (ii) improved documentation of procedures adopted by specific programs for reducing the loss of genetic diversity and fitness.


captive breeding; conservation; domestication selection; genetic diversity; reintroduction; salmon

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center