Format

Send to

Choose Destination
See comment in PubMed Commons below
J Cell Biol. 2015 Jan 5;208(1):33-52. doi: 10.1083/jcb.201405110.

Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins.

Author information

  • 1Department of Biological Chemistry, Center for Epigenetics, and Department of Oncology Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, MD 21205 Department of Biological Chemistry, Center for Epigenetics, and Department of Oncology Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, MD 21205.
  • 2Department of Biological Chemistry, Center for Epigenetics, and Department of Oncology Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, MD 21205.
  • 3Department of Biological Chemistry, Center for Epigenetics, and Department of Oncology Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, MD 21205 Department of Biological Chemistry, Center for Epigenetics, and Department of Oncology Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, MD 21205 kreddy4@jhmi.edu.

Abstract

Nuclear organization has been implicated in regulating gene activity. Recently, large developmentally regulated regions of the genome dynamically associated with the nuclear lamina have been identified. However, little is known about how these lamina-associated domains (LADs) are directed to the nuclear lamina. We use our tagged chromosomal insertion site system to identify small sequences from borders of fibroblast-specific variable LADs that are sufficient to target these ectopic sites to the nuclear periphery. We identify YY1 (Ying-Yang1) binding sites as enriched in relocating sequences. Knockdown of YY1 or lamin A/C, but not lamin A, led to a loss of lamina association. In addition, targeted recruitment of YY1 proteins facilitated ectopic LAD formation dependent on histone H3 lysine 27 trimethylation and histone H3 lysine di- and trimethylation. Our results also reveal that endogenous loci appear to be dependent on lamin A/C, YY1, H3K27me3, and H3K9me2/3 for maintenance of lamina-proximal positioning.

PMID:
25559185
PMCID:
PMC4284222
DOI:
10.1083/jcb.201405110
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center