Format

Send to

Choose Destination
Phys Biol. 2015 Jan 5;12(1):016007. doi: 10.1088/1478-3975/12/1/016007.

A topological study of repetitive co-activation networks in in vitro cortical assemblies.

Author information

1
Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS),University of Genova, Genova, Italy.

Abstract

To address the issue of extracting useful information from large data-set of large scale networks of neurons, we propose an algorithm that involves both algebraic-statistical and topological tools. We investigate the electrical behavior of in vitro cortical assemblies both during spontaneous and stimulus-evoked activity coupled to Micro-Electrode Arrays (MEAs). Our goal is to identify core sub-networks of repetitive and synchronous patterns of activity and to characterize them. The analysis is performed at different resolution levels using a clustering algorithm that reduces the network dimensionality. To better visualize the results, we provide a graphical representation of the detected sub-networks and characterize them with a topological invariant, i.e. the sequence of Betti numbers computed on the associated simplicial complexes. The results show that the extracted sub-populations of neurons have a more heterogeneous firing rate with respect to the entire network. Furthermore, the comparison of spontaneous and stimulus-evoked behavior reveals similarities in the identified clusters of neurons, indicating that in both conditions similar activation patterns drive the global network activity.

PMID:
25559130
DOI:
10.1088/1478-3975/12/1/016007
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for IOP Publishing Ltd.
Loading ...
Support Center