Send to

Choose Destination
Eur J Appl Physiol. 2015 Mar;115(3):451-69. doi: 10.1007/s00421-014-3086-4. Epub 2014 Dec 31.

The energy cost of sprint running and the role of metabolic power in setting top performances.

Author information

Department of Medical and Biological Sciences, University of Udine, Piazzale Kolbe 4, 33100, Udine, Italy,



To estimate the energetics and biomechanics of accelerated/decelerated running on flat terrain based on its biomechanical similarity to constant speed running up/down an 'equivalent slope' dictated by the forward acceleration (a f).


Time course of a f allows one to estimate: (1) energy cost of sprint running (C sr), from the known energy cost of uphill/downhill running, and (2) instantaneous (specific) mechanical accelerating power (P sp = a f × speed).


In medium-level sprinters (MLS), C sr and metabolic power requirement (P met = C sr × speed) at the onset of a 100-m dash attain ≈50 J kg(-1) m(-1), as compared to ≈4 for running at constant speed, and ≈90 W kg(-1). For Bolt's current 100-m world record (9.58 s) the corresponding values attain ≈105 J kg(-1) m(-1) and ≈200 W kg(-1). This approach, as applied by Osgnach et al. (Med Sci Sports Exerc 42:170-178, 2010) to data obtained by video-analysis during soccer games, has been implemented in portable GPS devices (GPEXE), thus yielding P met throughout the match. Actual O₂ consumed, estimated from P met assuming a monoexponential VO₂ response (Patent Pending, TV2014A000074), was close to that determined by portable metabolic carts. Peak P sp (W kg(-1)) was 17.5 and 19.6 for MLS and elite soccer players, and 30 for Bolt. The ratio of horizontal to overall ground reaction force (per kg body mass) was ≈20 % larger, and its angle of application in respect to the horizontal ≈10° smaller, for Bolt, as compared to MLS. Finally, we estimated that, on a 10 % down-sloping track Bolt could cover 100 m in 8.2 s.


The above approach can yield useful information on the bioenergetics and biomechanics of accelerated/decelerated running.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center