Format

Send to

Choose Destination
IEEE Trans Neural Netw Learn Syst. 2015 Sep;26(9):2136-47. doi: 10.1109/TNNLS.2014.2376974. Epub 2014 Dec 18.

Group Factor Analysis.

Abstract

Factor analysis (FA) provides linear factors that describe the relationships between individual variables of a data set. We extend this classical formulation into linear factors that describe the relationships between groups of variables, where each group represents either a set of related variables or a data set. The model also naturally extends canonical correlation analysis to more than two sets, in a way that is more flexible than previous extensions. Our solution is formulated as a variational inference of a latent variable model with structural sparsity, and it consists of two hierarchical levels: 1) the higher level models the relationships between the groups and 2) the lower models the observed variables given the higher level. We show that the resulting solution solves the group factor analysis (GFA) problem accurately, outperforming alternative FA-based solutions as well as more straightforward implementations of GFA. The method is demonstrated on two life science data sets, one on brain activation and the other on systems biology, illustrating its applicability to the analysis of different types of high-dimensional data sources.

PMID:
25532193
DOI:
10.1109/TNNLS.2014.2376974
Free full text

Supplemental Content

Full text links

Icon for IEEE Engineering in Medicine and Biology Society Icon for Spiral, Imperial College Digital Repository
Loading ...
Support Center