Format

Send to

Choose Destination
See comment in PubMed Commons below
Dev Biol. 2015 May 1;401(1):152-64. doi: 10.1016/j.ydbio.2014.12.005. Epub 2014 Dec 12.

Tissue mechanics and adhesion during embryo development.

Author information

1
Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA.
2
Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA. Electronic address: lad43@pitt.edu.

Abstract

During development cells interact mechanically with their microenvironment through cell-cell and cell-matrix adhesions. Many proteins involved in these adhesions serve both mechanical and signaling roles. In this review we will focus on the mechanical roles of these proteins and their complexes in transmitting force or stress from cell to cell or from cell to the extracellular matrix. As forces operate against tissues they establish tissue architecture, extracellular matrix assembly, and pattern cell shapes. As tissues become more established, adhesions play a major role integrating cells with the mechanics of their local environment. Adhesions may serve as both a molecular-specific glue, holding defined populations of cells together, and as a lubricant, allowing tissues to slide past one another. We review the biophysical principles and experimental tools used to study adhesion so that we may aid efforts to understand how adhesions guide these movements and integrate their signaling functions with mechanical function. As we conclude we review efforts to develop predictive models of adhesion that can be used to interpret experiments and guide future efforts to control and direct the process of tissue self-assembly during development.

KEYWORDS:

Adhesion energy; Binding energy; Elastic modulus; Morphogenesis; Stiffness; Surface tension

PMID:
25512299
PMCID:
PMC4402132
DOI:
10.1016/j.ydbio.2014.12.005
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center