Format

Send to

Choose Destination
BMC Genomics. 2014 Dec 15;15:1109. doi: 10.1186/1471-2164-15-1109.

Bimodal signatures of germline methylation are linked with gene expression plasticity in the coral Acropora millepora.

Author information

1
Institute for Cell and Molecular Biology, University of Texas Austin, Austin, USA. grovesdixon@utexas.edu.

Abstract

BACKGROUND:

In invertebrates, genes belonging to dynamically regulated functional categories appear to be less methylated than "housekeeping" genes, suggesting that DNA methylation may modulate gene expression plasticity. To date, however, experimental evidence to support this hypothesis across different natural habitats has been lacking.

RESULTS:

Gene expression profiles were generated from 30 pairs of genetically identical fragments of coral Acropora millepora reciprocally transplanted between distinct natural habitats for 3 months. Gene expression was analyzed in the context of normalized CpG content, a well-established signature of historical germline DNA methylation. Genes with weak methylation signatures were more likely to demonstrate differential expression based on both transplant environment and population of origin than genes with strong methylation signatures. Moreover, the magnitude of expression differences due to environment and population were greater for genes with weak methylation signatures.

CONCLUSIONS:

Our results support a connection between differential germline methylation and gene expression flexibility across environments and populations. Studies of phylogenetically basal invertebrates such as corals will further elucidate the fundamental functional aspects of gene body methylation in Metazoa.

PMID:
25511458
PMCID:
PMC4378018
DOI:
10.1186/1471-2164-15-1109
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center