Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biomed Inform. 2015 Feb;53:300-7. doi: 10.1016/j.jbi.2014.11.015. Epub 2014 Dec 12.

Knowledge based word-concept model estimation and refinement for biomedical text mining.

Author information

1
Department of Computing and Information Systems, The University of Melbourne, VIC 3010, Australia. Electronic address: antonio.jimeno@gmail.com.
2
Departamento de Lenguages y Sistemas Informáticos, Universitat Jaume I, Castellón de la Plana, 12071, Spain.

Abstract

Text mining of scientific literature has been essential for setting up large public biomedical databases, which are being widely used by the research community. In the biomedical domain, the existence of a large number of terminological resources and knowledge bases (KB) has enabled a myriad of machine learning methods for different text mining related tasks. Unfortunately, KBs have not been devised for text mining tasks but for human interpretation, thus performance of KB-based methods is usually lower when compared to supervised machine learning methods. The disadvantage of supervised methods though is they require labeled training data and therefore not useful for large scale biomedical text mining systems. KB-based methods do not have this limitation. In this paper, we describe a novel method to generate word-concept probabilities from a KB, which can serve as a basis for several text mining tasks. This method not only takes into account the underlying patterns within the descriptions contained in the KB but also those in texts available from large unlabeled corpora such as MEDLINE. The parameters of the model have been estimated without training data. Patterns from MEDLINE have been built using MetaMap for entity recognition and related using co-occurrences. The word-concept probabilities were evaluated on the task of word sense disambiguation (WSD). The results showed that our method obtained a higher degree of accuracy than other state-of-the-art approaches when evaluated on the MSH WSD data set. We also evaluated our method on the task of document ranking using MEDLINE citations. These results also showed an increase in performance over existing baseline retrieval approaches.

KEYWORDS:

Biomedical literature; Information retrieval; Text mining; Word sense disambiguation; Word-concept probability

PMID:
25510606
DOI:
10.1016/j.jbi.2014.11.015
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center