Send to

Choose Destination
Mol Metab. 2014 Sep 28;3(9):823-33. doi: 10.1016/j.molmet.2014.09.005. eCollection 2014 Dec.

GLP-1 receptor agonism ameliorates hepatic VLDL overproduction and de novo lipogenesis in insulin resistance.

Author information

Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada ; Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada.
Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
Physiology and Experimental Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.



Fasting dyslipidemia is commonly observed in insulin resistant states and mechanistically linked to hepatic overproduction of very low density lipoprotein (VLDL). Recently, the incretin hormone glucagon-like peptide-1 (GLP-1) has been implicated in ameliorating dyslipidemia associated with insulin resistance and reducing hepatic lipid stores. Given that hepatic VLDL production is a key determinant of circulating lipid levels, we investigated the role of both peripheral and central GLP-1 receptor (GLP-1R) agonism in regulation of VLDL production.


The fructose-fed Syrian golden hamster was employed as a model of diet-induced insulin resistance and VLDL overproduction. Hamsters were treated with the GLP-1R agonist exendin-4 by intraperitoneal (ip) injection for peripheral studies or by intracerebroventricular (ICV) administration into the 3rd ventricle for central studies. Peripheral studies were repeated in vagotomised hamsters.


Short term (7-10 day) peripheral exendin-4 enhanced satiety and also prevented fructose-induced fasting dyslipidemia and hyperinsulinemia. These changes were accompanied by decreased fasting plasma glucose levels, reduced hepatic lipid content and decreased levels of VLDL-TG and -apoB100 in plasma. The observed changes in fasting dyslipidemia could be partially explained by reduced respiratory exchange ratio (RER) thereby indicating a switch in energy utilization from carbohydrate to lipid. Additionally, exendin-4 reduced mRNA markers associated with hepatic de novo lipogenesis and inflammation. Despite these observations, GLP-1R activity could not be detected in primary hamster hepatocytes, thus leading to the investigation of a potential brain-liver axis functioning to regulate lipid metabolism. Short term (4 day) central administration of exendin-4 decreased body weight and food consumption and further prevented fructose-induced hypertriglyceridemia. Additionally, the peripheral lipid-lowering effects of exendin-4 were negated in vagotomised hamsters implicating the involvement of parasympathetic signaling.


Exendin-4 prevents fructose-induced dyslipidemia and hepatic VLDL overproduction in insulin resistance through an indirect mechanism involving altered energy utilization, decreased hepatic lipid synthesis and also requires an intact parasympathetic signaling pathway.


FFA, free fatty acid; Fasting dyslipidemia; GLP-1, glucagon-like peptide-1; GLP-1R, GLP-1 receptor; Glucagon-like peptide-1 (GLP-1); Hepatic steatosis; ICV, intracerebroventricular; Incretin; Insulin resistance; RER, respiratory exchange ratio; T2D, type 2 diabetes; VLDL, very low density lipoprotein; Very low density lipoprotein (VLDL); apoB100, apolipoproteinB100; ip, intraperitoneal

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center