Format

Send to

Choose Destination
Biol Open. 2014 Dec 12;4(1):13-21. doi: 10.1242/bio.20149449.

Influence of environmental information in natural scenes and the effects of motion adaptation on a fly motion-sensitive neuron during simulated flight.

Author information

1
Department of Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany Center of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, Inspiration 1/Zehlendorfer Damm 201, 33619 Bielefeld, Germany.
2
Department of Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany Center of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, Inspiration 1/Zehlendorfer Damm 201, 33619 Bielefeld, Germany martin.egelhaaf@uni-bielefeld.de.

Abstract

Gaining information about the spatial layout of natural scenes is a challenging task that flies need to solve, especially when moving at high velocities. A group of motion sensitive cells in the lobula plate of flies is supposed to represent information about self-motion as well as the environment. Relevant environmental features might be the nearness of structures, influencing retinal velocity during translational self-motion, and the brightness contrast. We recorded the responses of the H1 cell, an individually identifiable lobula plate tangential cell, during stimulation with image sequences, simulating translational motion through natural sceneries with a variety of differing depth structures. A correlation was found between the average nearness of environmental structures within large parts of the cell's receptive field and its response across a variety of scenes, but no correlation was found between the brightness contrast of the stimuli and the cell response. As a consequence of motion adaptation resulting from repeated translation through the environment, the time-dependent response modulations induced by the spatial structure of the environment were increased relatively to the background activity of the cell. These results support the hypothesis that some lobula plate tangential cells do not only serve as sensors of self-motion, but also as a part of a neural system that processes information about the spatial layout of natural scenes.

KEYWORDS:

Adaptation; Contrast; Fly; Natural images; Nearness; Neural activity; Spatial vision

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center