Format

Send to

Choose Destination
Cancer Lett. 2015 Feb 28;357(2):520-6. doi: 10.1016/j.canlet.2014.12.003. Epub 2014 Dec 8.

Mutations of p53 and KRAS activate NF-κB to promote chemoresistance and tumorigenesis via dysregulation of cell cycle and suppression of apoptosis in lung cancer cells.

Author information

1
Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Fudan University Shanghai Medical College, Shanghai, 200032, China.
2
Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China.
3
Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Fudan University Shanghai Medical College, Shanghai, 200032, China. Electronic address: yanggong@fudan.edu.cn.
4
Department of Osteology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China. Electronic address: hongyangcm@163.com.

Abstract

Although mutations of p53 and KRAS and activation of NF-κB signaling have been highly associated with chemoresistance and tumorigenesis of lung cancer, the interactive mechanisms between two of p53, KRAS, and NF-κB are elusive. In the present study, we first observed that blocking of NF-κB function in KRAS mutant A549 cell line with an IκBα mutant (IκBαM) inhibited cell cycle progression, anti-apoptosis, chemoresistance, and tumorigenesis. Silencing of p53 or KRAS in A549 or H358 cells either enhanced or attenuated the resistance of cells to cisplatin and taxol through promotion or suppression of the NF-κB p65 nuclear translocation. Introduction of a wild type p53 into p53 null lung cancer cell lines H1299 and H358 inhibited NF-κB activity, leading to the enhanced response to chemotherapeutic drugs. Delivery of a mutant p53 or KRAS-V12 into A549/IκBαM or H1299/p53Wt cells increased cell cycle progression, anti-apoptosis, chemoresistance, and tumorigenesis due to the accumulated nuclear localization of NF-κB p65, while treatment of H1299/p53Wt/KRAS-V12 with NF-κB inhibitor PS1145 diminished these effects. Thus, we conclude that p53 deficiency and KRAS mutation activate the NF-κB signaling to control chemoresistance and tumorigenesis, and that the status of p53 and KRAS may be considered for the targeted therapy against NF-κB in lung cancer patients.

KEYWORDS:

Chemoresistance; KRAS; Lung cancer; NF-κB; p53

PMID:
25499080
DOI:
10.1016/j.canlet.2014.12.003
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center