Format

Send to

Choose Destination
Neuroimage. 2015 Feb 15;107:127-135. doi: 10.1016/j.neuroimage.2014.12.002. Epub 2014 Dec 8.

Lead-DBS: a toolbox for deep brain stimulation electrode localizations and visualizations.

Author information

1
Department of Neurology, Movement Disorders Unit, Charité - University Medicine (CVK), Berlin, Germany; Center for Adaptive Rationality (ARC), Max-Planck-Institute for Human Development, Berlin, Germany. Electronic address: andreas.horn@charite.de.
2
Department of Neurology, Movement Disorders Unit, Charité - University Medicine (CVK), Berlin, Germany.

Abstract

To determine placement of electrodes after deep brain stimulation (DBS) surgery, a novel toolbox that facilitates both reconstruction of the lead electrode trajectory and the contact placement is introduced. Using the toolbox, electrode placement can be reconstructed and visualized based on the electrode-induced artifacts on post-operative magnetic resonance (MR) or computed tomography (CT) images. Correct electrode placement is essential for efficacious treatment with DBS. Post-operative knowledge about the placement of DBS electrode contacts and trajectories is a promising tool for clinical evaluation of DBS effects and adverse effects. It may help clinicians in identifying the best stimulation contacts based on anatomical target areas and may even shorten test stimulation protocols in the future. Fifty patients that underwent DBS surgery were analyzed in this study. After normalizing the post-operative MR/CT volumes into standard Montreal Neurological Institute (MNI)-stereotactic space, electrode leads (n=104) were detected by a novel algorithm that iteratively thresholds each axial slice and isolates the centroids of the electrode artifacts within the MR/CT-images (MR only n=32, CT only n=10, MR and CT n=8). Two patients received four, the others received two quadripolar DBS leads bilaterally, summing up to a total of 120 lead localizations. In a second reconstruction step, electrode contacts along the lead trajectories were reconstructed by using templates of electrode tips that had been manually created beforehand. Reconstructions that were made by the algorithm were finally compared to manual surveys of contact localizations. The algorithm was able to robustly accomplish lead reconstructions in an automated manner in 98% of electrodes and contact reconstructions in 69% of electrodes. Using additional subsequent manual refinement of the reconstructed contact positions, 118 of 120 electrode lead and contact reconstructions could be localized using the toolbox. Taken together, the toolbox presented here allows for a precise and fast reconstruction of DBS contacts by proposing a semi-automated procedure. Reconstruction results can be directly exported to two- and three-dimensional views that show the relationship between DBS contacts and anatomical target regions. The toolbox is made available to the public in form of an open-source MATLAB repository.

KEYWORDS:

Brain anatomy; Contact localization; Deep brain stimulation; Pallidum; Subthalamic nucleus; Thalamus

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center