The cell-membrane prothrombinase, fibrinogen-like protein 2, promotes angiogenesis and tumor development

Thromb Res. 2015 Jul;136(1):118-24. doi: 10.1016/j.thromres.2014.11.023. Epub 2014 Dec 4.

Abstract

The aim of the study was to further investigate the role of fibrinogen-like protein 2 (FGL-2), a transmembrane prothrombinase that directly cleaves prothrombin to thrombin, in angiogenesis and tumor development and the mechanism(s) underlying these processes. To study angiogenesis HUVEC clones with decreased fgl-2 mRNA were generated by specific siRNA. To study tumorigenesis SCID mice were implanted with intact (wild type) and fgl-2-silenced PC-3 clones. IFN-γ treated HUVEC expressing increased fgl-2 mRNA exhibited significant capillary sprouting that was not inhibited by hirudin, whereas fgl-2 silencing completely inhibited blood-vessel formation. Tumors (poorly differentiated carcinoma) developed in all 12 mice injected with wild type PC-3 compared with 8/12 mice injected with the fgl-2-silenced PC-3 clone. The tumors developed by fgl-2-silenced PC-3 clones were smaller and less aggressive and contained significantly fewer blood vessels (p<0.05). All tumors' sections were negative for thrombin staining, indicating that FGL-2-induced tumorigenesis was not mediated by thrombin. In fgl-2-silenced tumors there was a decrease in fgl-2 mRNA (p=0.02) and ERK1/2 phosphorylation (p<0.05) by 80% and a 20%, respectively. The mechanism underlying these processes, studied in PC-3 clones, revealed that fgl-2 silencing was associated with a 65% decrease in FGF-2 mRNA (p<0.01) and a 30% down regulation of ERK1/2 phosphorylation (p<0.05). Together, these results suggest that FGL-2 mediates angiogenesis and tumorigenesis not by thrombin-mediated mechanism but rather through FGF-2/ERK signaling pathway. FGL-2 may serve as a valuable therapeutic target in the future.

Keywords: Angiogenesis; Fibrinogen-like protein 2; Tumorigenesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Carcinogenesis / genetics
  • Carcinogenesis / metabolism*
  • Carcinogenesis / pathology
  • Cell Line, Tumor
  • Cell Proliferation
  • Fibrinogen / genetics
  • Fibrinogen / metabolism*
  • Human Umbilical Vein Endothelial Cells
  • Humans
  • MAP Kinase Signaling System*
  • Male
  • Mice, SCID
  • Neovascularization, Pathologic / genetics
  • Neovascularization, Pathologic / metabolism*
  • Neovascularization, Pathologic / pathology
  • Prostate / metabolism
  • Prostate / pathology
  • Prostatic Neoplasms / genetics
  • Prostatic Neoplasms / metabolism*
  • Prostatic Neoplasms / pathology
  • RNA Interference
  • RNA, Small Interfering / genetics
  • Thrombin / metabolism
  • Thromboplastin / genetics
  • Thromboplastin / metabolism*

Substances

  • FGL2 protein, human
  • RNA, Small Interfering
  • Fibrinogen
  • Thromboplastin
  • Thrombin