Format

Send to

Choose Destination
Food Sci Nutr. 2014 Nov;2(6):828-39. doi: 10.1002/fsn3.178. Epub 2014 Oct 17.

New insights on effects of a dietary supplement on oxidative and nitrosative stress in humans.

Author information

1
VDF FutureCeuticals Inc. 2692 N State Rt. 1-17, Momence, Illinois, 60954 ; University of Illinois at Urbana-Champaign 1201 W. Gregory Dr, Urbana, Illinois, 61801.
2
Noxygen Science Transfer & Diagnostics GmbH Lindenmatte 42, 79215, Elzach, Germany.

Abstract

The research community is generally agreed that maintenance of healthy levels of free radicals and related oxidants are important for good health. However, utilization of the "redox stress hypothesis" can provide us with concrete nutritional targets in order to better support and maintain "optimal health." Following this hypothesis we performed a crossover, double-blind, placebo-controlled, single-dose study on the effects of SPECTRA™, a dietary supplement, on oxidative stress markers (OSM) in human participants (n = 22). The measurement of OSM (ex vivo intra- and extracellular formation of reactive oxygen species (ROS, O2 (-), H2O2, OH(-)) in whole blood, respiratory activity of blood cells, as well as mitochondrial-dependent ROS formation, and respiratory activity), was performed using EPR spectrometer nOxyscan, spin probe CMH, and oxygen label NOX-15.1, respectively. Furthermore, we investigated the ability of SPECTRA™ to modulate ex vivo cellular inflammatory responses induced by stimulation with exogenous TNF-α and also followed changes in bioavailable NO concentrations. In this clinical study, we demonstrated that administration of SPECTRA™ resulted in statistically significant long-term inhibition of mitochondrial and cellular ROS generation by as much as 17% as well as 3.5-times inhibition in extracellular NADPH system-dependent generation of O2 (-), and nearly complete inhibition of extracellular H2O2 formation. This was reflected in more than two times inhibition of ex vivo cellular inflammatory response and also increases in bioavailable NO concentration. For the first time, we have measured synergetic, biological effects of a natural supplement on changes in OSM and cellular metabolic activity. The unique design and activity of the plant-based natural supplement, in combination with the newly developed and extended Vitality test, demonstrates the potential of using dietary supplements to modulate OSM and also opens the door to future research into the use of natural supplements for supporting optimal health.

KEYWORDS:

Dietary supplement; EPR; RONS; SPECTRA™; inflammatory response; nitric oxide; oxidative stress; vitality test

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center