Send to

Choose Destination
J Ind Microbiol Biotechnol. 2015 Feb;42(2):207-18. doi: 10.1007/s10295-014-1556-7. Epub 2014 Dec 5.

Genomic reconstruction to improve bioethanol and ergosterol production of industrial yeast Saccharomyces cerevisiae.

Author information

Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China.


Baker's yeast (Saccharomyces cerevisiae) is the common yeast used in the fields of bread making, brewing, and bioethanol production. Growth rate, stress tolerance, ethanol titer, and byproducts yields are some of the most important agronomic traits of S. cerevisiae for industrial applications. Here, we developed a novel method of constructing S. cerevisiae strains for co-producing bioethanol and ergosterol. The genome of an industrial S. cerevisiae strain, ZTW1, was first reconstructed through treatment with an antimitotic drug followed by sporulation and hybridization. A total of 140 mutants were selected for ethanol fermentation testing, and a significant positive correlation between ergosterol content and ethanol production was observed. The highest performing mutant, ZG27, produced 7.9 % more ethanol and 43.2 % more ergosterol than ZTW1 at the end of fermentation. Chromosomal karyotyping and proteome analysis of ZG27 and ZTW1 suggested that this breeding strategy caused large-scale genome structural variations and global gene expression diversities in the mutants. Genetic manipulation further demonstrated that the altered expression activity of some genes (such as ERG1, ERG9, and ERG11) involved in ergosterol synthesis partly explained the trait improvement in ZG27.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center