Format

Send to

Choose Destination
Nature. 2015 Feb 19;518(7539):422-6. doi: 10.1038/nature13952. Epub 2014 Nov 26.

Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution.

Author information

1
1] Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada [2] Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada.
2
Department of Medical Oncology, BC Cancer Agency, 600 West 10th Avenue, Vancouver, British Columbia V5Z 4E6, Canada.
3
Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada.
4
1] Department of Oncology, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK [2] Cancer Research UK Cambridge Research Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK.
5
1] Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [2] Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
6
1] Department of Experimental Therapeutics, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada [2] The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada.
7
Michael Smith Genome Sciences Centre, Vancouver, British Columbia V5Z 1L3, Canada.
8
Centre for Translational and Applied Genomics, BC Cancer Agency, 600 West 10th Avenue, Vancouver, British Columbia V5Z 4E6, Canada.
9
1] Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada [2] Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada.
10
1] Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada [2] Centre for Translational and Applied Genomics, BC Cancer Agency, 600 West 10th Avenue, Vancouver, British Columbia V5Z 4E6, Canada.
11
1] Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada [2] Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada [3] Michael Smith Genome Sciences Centre, Vancouver, British Columbia V5Z 1L3, Canada.
12
1] Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada [2] Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada [3] Michael Smith Genome Sciences Centre, Vancouver, British Columbia V5Z 1L3, Canada [4] Centre for Translational and Applied Genomics, BC Cancer Agency, 600 West 10th Avenue, Vancouver, British Columbia V5Z 4E6, Canada.

Abstract

Human cancers, including breast cancers, comprise clones differing in mutation content. Clones evolve dynamically in space and time following principles of Darwinian evolution, underpinning important emergent features such as drug resistance and metastasis. Human breast cancer xenoengraftment is used as a means of capturing and studying tumour biology, and breast tumour xenografts are generally assumed to be reasonable models of the originating tumours. However, the consequences and reproducibility of engraftment and propagation on the genomic clonal architecture of tumours have not been systematically examined at single-cell resolution. Here we show, using deep-genome and single-cell sequencing methods, the clonal dynamics of initial engraftment and subsequent serial propagation of primary and metastatic human breast cancers in immunodeficient mice. In all 15 cases examined, clonal selection on engraftment was observed in both primary and metastatic breast tumours, varying in degree from extreme selective engraftment of minor (<5% of starting population) clones to moderate, polyclonal engraftment. Furthermore, ongoing clonal dynamics during serial passaging is a feature of tumours experiencing modest initial selection. Through single-cell sequencing, we show that major mutation clusters estimated from tumour population sequencing relate predictably to the most abundant clonal genotypes, even in clonally complex and rapidly evolving cases. Finally, we show that similar clonal expansion patterns can emerge in independent grafts of the same starting tumour population, indicating that genomic aberrations can be reproducible determinants of evolutionary trajectories. Our results show that measurement of genomically defined clonal population dynamics will be highly informative for functional studies using patient-derived breast cancer xenoengraftment.

PMID:
25470049
PMCID:
PMC4864027
DOI:
10.1038/nature13952
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center