Format

Send to

Choose Destination
J Natl Cancer Inst. 2014 Dec 1;107(1):358. doi: 10.1093/jnci/dju358. Print 2015 Jan.

Role of LKB1-CRTC1 on glycosylated COX-2 and response to COX-2 inhibition in lung cancer.

Author information

1
Department of Medicine (CC, RG, MZ, FJK), Genetics Institute (RG, FJK), Genetics and Genomics Graduate Program (RG, FJK), and Molecular Genetics and Microbiology (ZC, YG, CH, LW), University of Florida, Gainesville, FL; Department of Cancer Biology and Informatics, the Scripps Research Institute, Jupiter, FL (ALA, MF); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC (ALA); Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL (CH); Cancer Informatics Core (EAW), Department of Molecular Oncology (BEE, WDC), and Department of Thoracic Oncology (EBH), Moffitt Cancer Center, Tampa, FL; Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (MZK).
2
Department of Medicine (CC, RG, MZ, FJK), Genetics Institute (RG, FJK), Genetics and Genomics Graduate Program (RG, FJK), and Molecular Genetics and Microbiology (ZC, YG, CH, LW), University of Florida, Gainesville, FL; Department of Cancer Biology and Informatics, the Scripps Research Institute, Jupiter, FL (ALA, MF); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC (ALA); Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL (CH); Cancer Informatics Core (EAW), Department of Molecular Oncology (BEE, WDC), and Department of Thoracic Oncology (EBH), Moffitt Cancer Center, Tampa, FL; Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (MZK). fkaye@ufl.edu.

Abstract

BACKGROUND:

Cyclooxygenase-2 (COX-2) directs the synthesis of prostaglandins including PGE-2 linking inflammation with mitogenic signaling. COX-2 is also an anticancer target, however, treatment strategies have been limited by unreliable expression assays and by inconsistent tumor responses to COX-2 inhibition.

METHODS:

We analyzed the TCGA and Director's Challenge lung cancer datasets (n = 188) and also generated an LKB1-null lung cancer gene signature (n = 53) to search the Broad Institute/Connectivity-MAP (C-MAP) dataset. We performed ChIP analyses, real-time polymerase chain reaction, immunoblotting, and drug testing of tumor cell lines (n = 8) and primary lung adenocarcinoma surgical resections (n = 13).

RESULTS:

We show that COX-2 is a target of the cAMP/CREB coactivator CRTC1 signaling pathway. In addition, we detected a correlation between LKB1 status, CRTC1 activation, and presence of glycosylated, but not inactive hypoglycosylated COX-2 in primary lung adenocarcinoma. A search of the C-MAP drug database discovered that all high-ranking drugs positively associated with the LKB1-null signature are known CRTC1 activators, including forskolin and six different PGE-2 analogues. Somatic LKB1 mutations are present in 20.0% of lung adenocarcinomas, and we observed growth inhibition with COX-2 inhibitors in LKB1-null lung cancer cells with activated CRTC1 as compared with LKB1-wildtype cells (NS-398, P = .002 and Niflumic acid, P = .006; two-tailed t test).

CONCLUSION:

CRTC1 activation is a key event that drives the LKB1-null mRNA signature in lung cancer. We also identified a positive feedback LKB1/CRTC1 signaling loop for COX-2/PGE2 regulation. These data suggest a role for LKB1 status and glycosylated COX-2 as specific biomarkers that provide a framework for selecting patients for COX-2 inhibition studies.

PMID:
25465874
PMCID:
PMC4271078
DOI:
10.1093/jnci/dju358
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center