Format

Send to

Choose Destination
Atherosclerosis. 2014 Dec;237(2):597-608. doi: 10.1016/j.atherosclerosis.2014.10.016. Epub 2014 Oct 18.

Lipoprotein lipase: from gene to atherosclerosis.

Author information

1
Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China.
2
Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China; School of Nursing, University of South China, Hengyang, Hunan 421001, China.
3
Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada.
4
Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The Cumming School of Medicine, The University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada.
5
Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
6
Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China. Electronic address: wdy20042004@126.com.
7
Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China. Electronic address: tangchaoke@qq.com.

Abstract

Lipoprotein lipase (LPL) is a key enzyme in lipid metabolism and responsible for catalyzing lipolysis of triglycerides in lipoproteins. LPL is produced mainly in adipose tissue, skeletal and heart muscle, as well as in macrophage and other tissues. After synthesized, it is secreted and translocated to the vascular lumen. LPL expression and activity are regulated by a variety of factors, such as transcription factors, interactive proteins and nutritional state through complicated mechanisms. LPL with different distributions may exert distinct functions and have diverse roles in human health and disease with close association with atherosclerosis. It may pose a pro-atherogenic or an anti-atherogenic effect depending on its locations. In this review, we will discuss its gene, protein, synthesis, transportation and biological functions, and then focus on its regulation and relationship with atherosclerosis and potential underlying mechanisms. The goal of this review is to provide basic information and novel insight for further studies and therapeutic targets.

KEYWORDS:

Atherosclerosis; Inflammation; LPL; Lipid; Lipoprotein; Triglyceride

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center