Format

Send to

Choose Destination
See comment in PubMed Commons below
Lancet. 2015 Feb 7;385(9967):509-16. doi: 10.1016/S0140-6736(14)61376-3. Epub 2014 Oct 15.

Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies.

Author information

1
Jules Stein Eye Institute Retina Division, and David Geffen School of Medicine, University of California, Los Angeles, CA, USA. Electronic address: schwartz@jsei.ucla.edu.
2
Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA.
3
Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA.
4
Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, MA, USA.
5
Jules Stein Eye Institute Retina Division, and David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
6
Advanced Cell Technology, Marlborough, MA, USA.
7
Storm Eye Institute, Medical University of South Carolina, Charleston, SC, USA.
8
Advanced Cell Technology, Marlborough, MA, USA. Electronic address: rlanza@advancedcell.com.

Abstract

BACKGROUND:

Since they were first derived more than three decades ago, embryonic stem cells have been proposed as a source of replacement cells in regenerative medicine, but their plasticity and unlimited capacity for self-renewal raises concerns about their safety, including tumour formation ability, potential immune rejection, and the risk of differentiating into unwanted cell types. We report the medium-term to long-term safety of cells derived from human embryonic stem cells (hESC) transplanted into patients.

METHODS:

In the USA, two prospective phase 1/2 studies were done to assess the primary endpoints safety and tolerability of subretinal transplantation of hESC-derived retinal pigment epithelium in nine patients with Stargardt's macular dystrophy (age >18 years) and nine with atrophic age-related macular degeneration (age >55 years). Three dose cohorts (50,000, 100,000, and 150,000 cells) were treated for each eye disorder. Transplanted patients were followed up for a median of 22 months by use of serial systemic, ophthalmic, and imaging examinations. The studies are registered with ClinicalTrials.gov, numbers NCT01345006 (Stargardt's macular dystrophy) and NCT01344993 (age-related macular degeneration).

FINDINGS:

There was no evidence of adverse proliferation, rejection, or serious ocular or systemic safety issues related to the transplanted tissue. Adverse events were associated with vitreoretinal surgery and immunosuppression. 13 (72%) of 18 patients had patches of increasing subretinal pigmentation consistent with transplanted retinal pigment epithelium. Best-corrected visual acuity, monitored as part of the safety protocol, improved in ten eyes, improved or remained the same in seven eyes, and decreased by more than ten letters in one eye, whereas the untreated fellow eyes did not show similar improvements in visual acuity. Vision-related quality-of-life measures increased for general and peripheral vision, and near and distance activities, improving by 16-25 points 3-12 months after transplantation in patients with atrophic age-related macular degeneration and 8-20 points in patients with Stargardt's macular dystrophy.

INTERPRETATION:

The results of this study provide the first evidence of the medium-term to long-term safety, graft survival, and possible biological activity of pluripotent stem cell progeny in individuals with any disease. Our results suggest that hESC-derived cells could provide a potentially safe new source of cells for the treatment of various unmet medical disorders requiring tissue repair or replacement.

FUNDING:

Advanced Cell Technology.

PMID:
25458728
DOI:
10.1016/S0140-6736(14)61376-3
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center