Format

Send to

Choose Destination
Toxicol In Vitro. 2015 Feb;29(1):195-203.

Influence of physicochemical properties of silver nanoparticles on mast cell activation and degranulation.

Author information

1
Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.

Abstract

Silver nanoparticles (AgNPs) are increasingly being incorporated into products for their antimicrobial properties. This has resulted in increased human exposures and the possibility of adverse health effects. Mast cells orchestrate allergic immune responses through degranulation and release of pre-formed mediators. Little data exists on understanding interactions of AgNPs with mast cells and the properties that influence activation and degranulation. Using bone marrow-derived mast cells and AgNPs of varying physicochemical properties we tested the hypothesis that AgNP physicochemical properties influence mast cell degranulation and osteopontin production. AgNPs evaluated included spherical 20 nm and 110 nm suspended in either polyvinylpyrrolidone (PVP) or citrate, Ag plates suspended in PVP of diameters between 40–60 nm or 100–130 nm, and Ag nanowires suspended in PVP with thicknesses <100 nm and length up to 2 μm. Mast cell responses were found to be dependent on the physicochemical properties of the AgNP. Further, we determined a role for scavenger receptor B1 in AgNP-induced mast cell responses. Mast cell degranulation was not dependent on AgNP dissolution but was prevented by tyrosine kinase inhibitor pretreatment. This study suggests that exposure to AgNPs may elicit adverse mast cell responses that could contribute to the initiation or exacerbation of allergic disease.

PMID:
25458489
PMCID:
PMC4294974
DOI:
10.1016/j.tiv.2014.10.008
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center