Format

Send to

Choose Destination
Hypertension. 2015 Feb;65(2):447-55. doi: 10.1161/HYPERTENSIONAHA.114.04179. Epub 2014 Dec 1.

Maternal diet during gestation and lactation modifies the severity of salt-induced hypertension and renal injury in Dahl salt-sensitive rats.

Author information

1
From the Departments of Physiology (A.M.G., D.L.M., P.L., M.M.S., T.M.K., C.Y., B.T.E., J.K., M.L., A.W.C.), Pediatrics (E.C.), and Cardiovascular Research Center (A.M.G.), Medical College of Wisconsin, Milwaukee. ageurts@mcw.edu.
2
From the Departments of Physiology (A.M.G., D.L.M., P.L., M.M.S., T.M.K., C.Y., B.T.E., J.K., M.L., A.W.C.), Pediatrics (E.C.), and Cardiovascular Research Center (A.M.G.), Medical College of Wisconsin, Milwaukee.

Abstract

Environmental exposure of parents or early in life may affect disease development in adults. We found that hypertension and renal injury induced by a high-salt diet were substantially attenuated in Dahl SS/JrHsdMcwiCrl (SS/Crl) rats that had been maintained for many generations on the grain-based 5L2F diet compared with SS/JrHsdMcwi rats (SS/Mcw) maintained on the casein-based AIN-76A diet (mean arterial pressure, 116±9 versus 154±25 mm Hg; urinary albumin excretion, 23±12 versus 170±80 mg/d). RNAseq analysis of the renal outer medulla identified 129 and 82 genes responding to a high-salt diet uniquely in SS/Mcw and SS/Crl rats, respectively, along with minor genetic differences between the SS substrains. The 129 genes responding to salt in the SS/Mcw strain included numerous genes with homologs associated with hypertension, cardiovascular disease, or renal disease in human. To narrow the critical window of exposure, we performed embryo-transfer experiments in which single-cell embryos from 1 colony (SS/Mcw or SS/Crl) were transferred to surrogate mothers from the other colony, with parents and surrogate mothers maintained on their respective original diet. All offspring were fed the AIN-76A diet after weaning. Salt-induced hypertension and renal injury were substantially exacerbated in rats developed from SS/Crl embryos transferred to SS/Mcw surrogate mothers. Conversely, salt-induced hypertension and renal injury were significantly attenuated in rats developed from SS/Mcw embryos transferred to SS/Crl surrogate mothers. Together, the data suggest that maternal diet during the gestational-lactational period has substantial effects on the development of salt-induced hypertension and renal injury in adult SS rats.

KEYWORDS:

Dahl salt-sensitive rats; acute renal injury; blood pressure; caseins; hypertension; rats

Comment in

PMID:
25452472
PMCID:
PMC4289102
DOI:
10.1161/HYPERTENSIONAHA.114.04179
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center