Send to

Choose Destination
J Mol Biol. 2015 Feb 27;427(4):943-954. doi: 10.1016/j.jmb.2014.11.002. Epub 2014 Nov 9.

Bicistronic mRNAs to enhance membrane protein overexpression.

Author information

Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland.
Institute of Medical Microbiology, University of Zurich, 8057 Zurich, Switzerland.
Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany. Electronic address:


Functional overexpression of membrane proteins is essential for their structural and functional characterization. However, functional overexpression is often difficult to achieve, and frequently either no expression or expression as misfolded aggregates is observed. We present an approach for improving the functional overexpression of membrane proteins in Escherichia coli using transcriptional fusions. The method involves the use of a small additional RNA sequence upstream to the RNA sequence of the target membrane protein and results in the production of a bicistronic mRNA. In contrast to the common approach of translational fusions to enhance protein expression, transcriptional fusions do not require protease treatment and subsequent removal of the fusion protein. Using this strategy, we observed improvements in the quantity and/or the quality of the produced material for several membrane proteins to levels compatible with structural studies. Our analysis revealed that translation of the upstream RNA sequence was not essential for increased expression. Rather, the sequence itself had a large impact on protein yields, suggesting that alternative folding of the transcript was responsible for the observed effect.


mRNA secondary structure; protein folding; structural biology; transcriptional fusion; ybeL

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science Icon for Zurich Open Access Repository and Archive
Loading ...
Support Center