Format

Send to

Choose Destination
See comment in PubMed Commons below
Trends Biochem Sci. 2014 Nov;39(11):548-55. doi: 10.1016/j.tibs.2014.09.005. Epub 2014 Oct 19.

Ice-binding proteins: a remarkable diversity of structures for stopping and starting ice growth.

Author information

  • 1Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada. Electronic address: peter.davies@queensu.ca.

Abstract

Antifreeze proteins (AFPs) were discovered in marine fishes that need protection from freezing. These ice-binding proteins (IBPs) are widespread across biological kingdoms, and their functions include freeze tolerance and ice adhesion. Consistent with recent independent evolution, AFPs have remarkably diverse folds that rely heavily on hydrogen- and disulfide-bonding. AFP ice-binding sites are typically flat, extensive, relatively hydrophobic, and are thought to organize water into an ice-like arrangement that merges and freezes with the quasi-liquid layer next to the ice lattice. In this article, the roles, properties, and structure-function interactions of IBPs are reviewed, and their relationship to ice nucleation proteins, which promote freezing at high subzero temperatures, is explored.

PMID:
25440715
DOI:
10.1016/j.tibs.2014.09.005
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center